• Clinical science · Aug 2015

    Inhibition of PKCβ2 overexpression ameliorates myocardial ischaemia/reperfusion injury in diabetic rats via restoring caveolin-3/Akt signaling.

    • Yanan Liu, Jiqin Jin, Shigang Qiao, Shaoqing Lei, Songyan Liao, Zhi-Dong Ge, Haobo Li, Gordon Tin-Chun Wong, Michael G Irwin, and Zhengyuan Xia.
    • *Department of Anesthesiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China.
    • Clin. Sci. 2015 Aug 1; 129 (4): 331-44.

    AbstractActivation of PKCβ (protein kinase Cβ) plays a critical role in myocardial I/R (ischaemia/reperfusion) injury in non-diabetic rodents. In the myocardium of diabetes, PKCβ2 overexpression is associated with increased vulnerability to post-ischaemic I/R injury with concomitantly impaired cardiomyocyte Cav (caveolin)-3 and Akt signalling compared with non-diabetic rats. We hypothesized that myocardial PKCβ overexpression in diabetes exacerbates myocardial I/R injury through impairing Cav-3/Akt signalling. Streptozotocin-induced diabetic rats were treated with the selective PKCβ inhibitor ruboxistaurin (RBX, 1 mg/kg per day) for 4 weeks, starting from 1 week after diabetes induction, before inducing myocardial I/R achieved by occluding the left descending coronary artery followed by reperfusion. Cardiac function was measured using a pressure-volume conductance system. In an in vitro study, cardiac H9C2 cells were exposed to high glucose (30 mmol/l) and subjected to hypoxia followed by reoxygenation (H/R) in the presence or absence of the selective PKCβ2 inhibitor CGP53353 (1 μmol/l), siRNAs of PKCβ2 or Cav-3 or Akt. Cell apoptosis and mitochondrial membrane potential were assessed by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) and JC-1 staining respectively. RBX significantly decreased post-ischaemic myocardial infarct size (35±5% compared with 49±3% in control, P<0.05) and attenuated cardiac dysfunction, and prevented the reduction in cardiac Cav-3 and enhanced phosphorylated/activated Akt (p-Akt) in diabetic rats (P<0.05). H/R increased cardiomyocyte injury under high glucose conditions as was evident by increased TUNEL-positive and increased JC-1 monomeric cells (P<0.05 compared with control), accompanied with increased PKCβ2 phosphorylation/activation and decreased Cav-3 expression. Either CGP53353 or PKCβ2 siRNA significantly attenuated all of these changes and enhanced p-Akt. Cav-3 gene knockdown significantly reduced p-Akt and increased post-hypoxic cellular and mitochondrial injury despite a concomitant reduction in PKCβ2 phosphorylation. PKCβ2 inhibition with RBX protects diabetic hearts from myocardial I/R injury through Cav-3-dependent activation of Akt.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,662 articles already indexed!

We guarantee your privacy. Your email address will not be shared.