-
- Yanan Liu, Jiqin Jin, Shigang Qiao, Shaoqing Lei, Songyan Liao, Zhi-Dong Ge, Haobo Li, Gordon Tin-Chun Wong, Michael G Irwin, and Zhengyuan Xia.
- *Department of Anesthesiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China.
- Clin. Sci. 2015 Aug 1; 129 (4): 331-44.
AbstractActivation of PKCβ (protein kinase Cβ) plays a critical role in myocardial I/R (ischaemia/reperfusion) injury in non-diabetic rodents. In the myocardium of diabetes, PKCβ2 overexpression is associated with increased vulnerability to post-ischaemic I/R injury with concomitantly impaired cardiomyocyte Cav (caveolin)-3 and Akt signalling compared with non-diabetic rats. We hypothesized that myocardial PKCβ overexpression in diabetes exacerbates myocardial I/R injury through impairing Cav-3/Akt signalling. Streptozotocin-induced diabetic rats were treated with the selective PKCβ inhibitor ruboxistaurin (RBX, 1 mg/kg per day) for 4 weeks, starting from 1 week after diabetes induction, before inducing myocardial I/R achieved by occluding the left descending coronary artery followed by reperfusion. Cardiac function was measured using a pressure-volume conductance system. In an in vitro study, cardiac H9C2 cells were exposed to high glucose (30 mmol/l) and subjected to hypoxia followed by reoxygenation (H/R) in the presence or absence of the selective PKCβ2 inhibitor CGP53353 (1 μmol/l), siRNAs of PKCβ2 or Cav-3 or Akt. Cell apoptosis and mitochondrial membrane potential were assessed by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) and JC-1 staining respectively. RBX significantly decreased post-ischaemic myocardial infarct size (35±5% compared with 49±3% in control, P<0.05) and attenuated cardiac dysfunction, and prevented the reduction in cardiac Cav-3 and enhanced phosphorylated/activated Akt (p-Akt) in diabetic rats (P<0.05). H/R increased cardiomyocyte injury under high glucose conditions as was evident by increased TUNEL-positive and increased JC-1 monomeric cells (P<0.05 compared with control), accompanied with increased PKCβ2 phosphorylation/activation and decreased Cav-3 expression. Either CGP53353 or PKCβ2 siRNA significantly attenuated all of these changes and enhanced p-Akt. Cav-3 gene knockdown significantly reduced p-Akt and increased post-hypoxic cellular and mitochondrial injury despite a concomitant reduction in PKCβ2 phosphorylation. PKCβ2 inhibition with RBX protects diabetic hearts from myocardial I/R injury through Cav-3-dependent activation of Akt.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*,_underline_or**bold**. - Superscript can be denoted by
<sup>text</sup>and subscript<sub>text</sub>. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3., hyphens-or asterisks*. - Links can be included with:
[my link to pubmed](http://pubmed.com) - Images can be included with:
 - For footnotes use
[^1](This is a footnote.)inline. - Or use an inline reference
[^1]to refer to a longer footnote elseweher in the document[^1]: This is a long footnote..