• Neuroscience · Feb 2022

    Correlation of Electrophysiological and Gene Transcriptional Dysfunctions in Single Cortical Parvalbumin Neurons After Noise Trauma.

    • Weihua Wang, Di Deng, Kyle Jenkins, Alexander K Zinsmaier, Qiang Zhou, and Shaowen Bao.
    • Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA. Electronic address: weihuawang@email.arizona.edu.
    • Neuroscience. 2022 Feb 1; 482: 87-99.

    AbstractParvalbumin-expressing (PV+) interneurons in the sensory cortex form powerful inhibitory synapses on the perisomatic compartments and axon initial segments of excitatory principal neurons (PNs), and perform diverse computational functions. Impaired PV+ interneuron functions have been reported in neural developmental and degenerative disorders. Expression of the unique marker parvalbumin (PV) is often used as a proxy of PV+ interneuron functions. However, it is not entirely clear how PV expression is correlated with PV+ interneuron properties such as spike firing and synaptic transmission. To address this question, we characterized electrophysiological properties of PV+ interneurons in the primary auditory cortex (AI) using whole-cell patch clamp recording, and analyzed the expression of several genes in samples collected from single neurons using the patch pipettes. We found that, after noise induced hearing loss (NIHL), the spike frequency adaptation increased, and the expression of PV, glutamate decarboxylase 67 (GAD67) and Shaw-like potassium channel (KV3.1) decreased in PV+ neurons. In samples prepared from the auditory cortical tissue, the mRNA levels of the target genes were all pairwise correlated. At the single neuron level, however, the expression of PV was significantly correlated with the expression of GAD67, but not KV3.1, maximal spike frequency, or spike frequency adaptation. The expression of KV3.1 was correlated with spike frequency adaptation, but not with the expression of GAD67. These results suggest separate transcriptional regulations of PV/GAD67 vs. KV3.1, both of which are modulated by NIHL.Copyright © 2021 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...


    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..


What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.