• BMC anesthesiology · Dec 2022

    Aerobic exercise alleviates ventilator-induced lung injury by inhibiting NLRP3 inflammasome activation.

    • Mengjie Liu, Yaqiang Zhang, Jie Yan, and Yuelan Wang.
    • Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012, Jinan, Shandong, China.
    • BMC Anesthesiol. 2022 Dec 1; 22 (1): 369369.

    BackgroundVentilator-induced lung injury (VILI) is caused by stretch stimulation and other factors related to mechanical ventilation (MV). NOD-like receptor protein 3 (NLRP3), an important innate immune component, is strongly associated with VILI. This study aimed to investigate the effect and mechanisms of aerobic exercise (EX) on VILI.MethodsTo test the effects of the PKC inhibitor bisindolylmaleimide I on PKC and NLRP3, male C57BL/6 mice (7 weeks old, 19 ~ 23 g) were randomly divided into four groups: control group(C), bisindolylmaleimide I-pretreated group(B), MV group, and bisindolylmaleimide I-pretreated + MV (B + MV) group. The mice were pretreated with bisindolylmaleimide I through intraperitoneal injection (0.02 mg/kg) 1 h before MV. MV was performed at a high tidal volume (30 ml/kg). To explore the ameliorative effect of EX on VILI, the mice were randomly divided into C group, MV group, EX group and EX + MV group and subjected to either MV or 5 weeks of EX training. After ventilation, haematoxylin-eosin (HE) staining and wet/dry weight ratio was used to assess lung pathophysiological changes. PKCɑ, P-PKCɑ, ASC, procaspase-1, caspase-1, pro-IL-1β, IL-1β, NLRP3 and occludin (tight junction protein) expression in lung tissues was determined by Western blotting. The level of IL-6 in alveolar lavage fluid was determined by ELISA.ResultsNLRP3, P-PKCɑ, and PKCɑ levels were inceased in MV group, but bisindolylmaleimide I treatment reversed these changes. Inhibition of PKC production prevented NLRP3 activation. Moreover, MV increased ASC, procaspase-1, caspase-1, pro-IL-1β, and IL1β levels and decreased occludin levels, but EX alleviated these changes. HE staining and lung injury scoring confirmed an absence of obvious lung injury in C group and EX group. Lung injury was most severe in MV group but was improved in EX + MV group. Overall, these findings suggest that MV activates the NLRP3 inflammasome by activating PKCɑ and inducing occludin degradation, while Exercise attenuates NLRP3 inflammasome and PKCɑ activation. Besides, exercise improves cyclic stretch-induced degradation of occludin.ConclusionPKC activation can increase the level of NLRP3, which can lead to lung injury. Exercise can reduce lung injury by inhibiting PKCɑ and NLRP3 activation. Exercise maybe a potential measure for clinical prevention of VILI.© 2022. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.