• Anesthesiology · Apr 2012

    Comparative Study

    Substance P signaling controls mast cell activation, degranulation, and nociceptive sensitization in a rat fracture model of complex regional pain syndrome.

    • Wen-Wu Li, Tian-Zhi Guo, De-yong Liang, Yuan Sun, Wade S Kingery, and J David Clark.
    • Physical Medicine and Rehabilitation Service, Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA.
    • Anesthesiology. 2012 Apr 1;116(4):882-95.

    BackgroundPatients with complex regional pain syndrome have increased tryptase in the skin of the affected extremity indicating mast cell (MC) accumulation and degranulation, processes known to be mediated by substance P (SP). The dysregulation of SP release from primary afferent neurons is characteristic of complex regional pain syndrome. The authors hypothesized that SP acting through the neurokinin-1 receptor results in mast cell accumulation, degranulation, and nociceptive sensitization in a rat model of complex regional pain syndrome.MethodsGroups of 6-10 rats underwent tibia fracture and hind limb casting for 4 weeks, and the hind paw skin was harvested for histologic and immunohistochemical analysis. The effects of a selective neurokinin-1 receptor antagonist (LY303870) and of direct SP intraplantar injection were measured. Dermal MC degranulation induced by sciatic nerve stimulation and the effects of LY303870 on this process were investigated. Finally, the antinociceptive effects of acute and chronic treatment with a MC degranulator (48/80) were tested.ResultsThe authors observed that fracture caused MC accumulation, activation, and degranulation, which were inhibited by LY303870; the percentage of MCs in close proximity to peptidergic nerve fibers increased after fracture; electrical stimulation caused MC activation and degranulation, which was blocked by LY303870; intraplantar SP-induced MC degranulation and acute administration of 48/80 caused MC degranulation and enhanced postfracture nociception, but MC-depleted animals showed less sensitization.ConclusionsThese results indicate that facilitated peptidergic neuron-MC signaling after fracture can cause MC accumulation, activation, and degranulation in the injured limb, resulting in nociceptive sensitization.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.