Tissue engineering. Part A
-
Longitudinally oriented microstructures are essential for a nerve scaffold to promote significant regeneration of injured peripheral axons across nerve gaps. Extensive attention has been devoted to develop scaffolds with inner structures mimicking the nerve-guiding basal lamina microchannels in autografts. However, to date, little information has been obtained about scaffolds with similar inner microstructures, and the efficacy of such scaffolds in bridging peripheral nerve gaps in vivo has never been examined. ⋯ We evaluated the efficacy of the CCH scaffold to bridge a 15-mm-long sciatic nerve defect in rats using a combination of morphological and functional techniques. The in vivo animal study showed that the CCH scaffold achieved nerve regeneration and functional recovery equivalent to that of an autograft, without the exogenous delivery of regenerative agents or cell transplantation. These findings demonstrate that CCH scaffolds may be used as alternatives to nerve autografts for peripheral nerve regeneration.