JAMA neurology
-
Review Meta Analysis
Aberrations in Peripheral Inflammatory Cytokine Levels in Parkinson Disease: A Systematic Review and Meta-analysis.
The association of nonmotor features and Parkinson disease (PD) is increasingly recognized. Evidence suggests that inflammation may play a role in PD pathologic features and symptoms. ⋯ The findings of the meta-analysis demonstrated higher peripheral concentrations of IL-6, tumor necrosis factor, IL-1β, IL-2, IL-10, C-reactive protein, and RANTES in patients with PD, strengthening the clinical evidence that PD is accompanied by an inflammatory response.
-
A novel astrocytic autoantibody has been identified as a biomarker of a relapsing autoimmune meningoencephalomyelitis that is immunotherapy responsive. Seropositivity distinguishes autoimmune glial fibrillary acidic protein (GFAP) meningoencephalomyelitis from disorders commonly considered in the differential diagnosis. ⋯ Glial fibrillary acidic protein-specific IgG identifies a distinctive, corticosteroid-responsive, sometimes paraneoplastic autoimmune meningoencephalomyelitis. It has a lethal canine equivalent: necrotizing meningoencephalitis. Expression of GFAP has been reported in some of the tumor types identified in paraneoplastic cases. Glial fibrillary acidic protein peptide-specific cytotoxic CD8+ T cells are implicated as effectors in a transgenic mouse model of autoimmune GFAP meningoencephalitis.
-
Calcium is a key cofactor of the coagulation cascade and may play a role in the pathophysiology of intracerebral hemorrhage (ICH). ⋯ Hypocalcemia correlates with the extent of bleeding in patients with ICH. A low calcium level may be associated with a subtle coagulopathy predisposing to increased bleeding and might therefore be a promising therapeutic target for acute ICH treatment trials.
-
Muscle weakness, the most common symptom of neuromuscular disease, may result from muscle dysfunction or may be caused indirectly by neuronal and neuromuscular junction abnormalities. To date, more than 780 monogenic neuromuscular diseases, linked to 417 different genes, have been identified in humans. Genome-editing methods, especially the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) system, hold clinical potential for curing many monogenic disorders, including neuromuscular diseases such as Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1. ⋯ Genome editing is a rapidly evolving technology with enormous translational potential once efficacy, delivery, and safety issues are addressed. The clinical impact of this technology is that genome editing can permanently correct disease-causing mutations and circumvent the hurdles of traditional gene- and cell-based therapies.
-
Multicenter Study
Endovascular Therapy for Acute Ischemic Stroke With Occlusion of the Middle Cerebral Artery M2 Segment.
Randomized clinical trials have shown the superiority of endovascular therapy (EVT) compared with best medical management for acute ischemic strokes with large vessel occlusion (LVO) in the anterior circulation. However, of 1287 patients enrolled in 5 trials, 94 with isolated second (M2) segment occlusions were randomized and 51 of these received EVT, thereby limiting evidence for treating isolated M2 segment occlusions as reflected in American Heart Association guidelines. ⋯ Although a randomized clinical trial is needed to confirm these findings, available data suggest that EVT is reasonable, safe, and effective for LVO of the M2 segment relative to best medical management.