Neuroscience
-
Comparative Study
Electrophysiological properties and thermosensitivity of mouse preoptic and anterior hypothalamic neurons in culture.
Responses of mouse preoptic and anterior hypothalamic neurons to variations of temperature are key elements in regulating the setpoint of homeotherms. The goal of the present work was to assess the relevance of culture preparations for investigating the cellular mechanisms underlying thermosensitivity in hypothalamic cells. Our working hypothesis was that some of the main properties of preoptic/anterior hypothalamic neurons in culture are similar to those reported by other authors in slice preparations. ⋯ The increased firing rate of warm-sensitive cells in response to warming can be prepotential and/or synaptically driven. Overall, our data suggest that a warm-sensitive phenotype is already developed in cultured cells. Therefore, and despite obvious differences in their networks, cultured and slice preparations of hypothalamic neurons can complement each other for further studies of warm-sensitivity at the cellular and molecular level.
-
Cocaine self-administration experiments were designed to assess the respective roles of D1-like and D2-like dopamine receptors in the ventral forebrain in cocaine reinforcement. D1-like or D2-like dopamine receptor antagonists were microinjected into the nucleus accumbens core, nucleus accumbens shell, neostriatum or lateral septum prior to sessions in which cocaine was self-administered under a progressive ratio schedule by rats. ⋯ Neither SCH-23390 nor eticlopride influenced cocaine reinforcement when administered into the neostriatum or lateral septum. Collectively, these results indicate that D1-like and D2 dopamine receptors in the nucleus accumbens shell selectively modulate the reinforcing efficacy of cocaine, whereas D1-like and D2 dopamine receptors in the accumbens core have a more general influence on reinforced behaviors.
-
The central nucleus of the amygdala (Ce) and the bed nucleus of the stria terminalis (BST) are key structures of the extended amygdala, which is suggested to be involved in drug addiction and reward. We have previously reported that the Ce plays a crucial role in the negative affective component of morphine withdrawal. In the present study, we examined the involvement of the neural pathway between the Ce and the BST in the negative affective component of morphine withdrawal in rats. ⋯ Bilateral excitotoxic lesion of the Ce reduced the number of morphine withdrawal-induced c-Fos-immunoreactive neurons in the lateral and medial BST, with significant decreases in the posterior, ventral and juxtacapsular parts of lateral division, and anterior part of the medial division, but not in the ventral part of the medial division of the BST. On the other hand, bilateral excitotoxic lesion of the BST had no effect on such c-Fos induction within the capsular part, nor the ventral and medial divisions of the Ce. These results suggest that activation of the BST mediated through the neural pathway from the Ce contributes to the negative affective component of morphine withdrawal.
-
The role of p38 and c-jun-N-terminal kinases 1/2, members of the mitogen-activated protein kinase family, in mediating the toxic effects of human immunodeficiency virus-1 transactivator of transcription (Tat) and gp120 were explored in primary mouse striatal neurons in vitro. Both Tat and gp120 caused significant increases in p38 and c-jun-N-terminal kinase mitogen-activated protein kinase phosphorylation, caspase-3 activity, neurite losses and cell death in striatal neurons. ⋯ Alternatively, gp120-induced increases in caspase-3 activity, neurite losses and neuronal death were prevented by p38, but not c-jun-N-terminal kinase, mitogen-activated protein kinase inhibition. Our findings suggest that gp120 induces neuronal dysfunction and death through actions at p38 mitogen-activated protein kinase, while Tat kills neurons through actions that are independent of p38 or c-jun-N-terminal kinase mitogen-activated protein kinase, or through the concurrent activation of multiple proapoptotic pathways.
-
Comparative Study
Three-dimensional chemoarchitecture of the basal forebrain: spatially specific association of cholinergic and calcium binding protein-containing neurons.
The basal forebrain refers to heterogeneous structures located close to the medial and ventral surfaces of the cerebral hemispheres. It contains diverse populations of neurons, including the cholinergic cortically projecting cells that show severe loss in Alzheimer's and related neurodegenerative diseases. The basal forebrain does not display any cytoarchitectural or other structural features that make it easy to demarcate functional boundaries, a problem that allowed different investigators to propose different organizational schemes. ⋯ At a smaller scale, the different cell types within the cholinergic space occupy overlapping high-density cell clusters that are either chemically uniform or mixed. However, the cell composition of these high-density clusters is regionally specific. The proposed scheme of basal forebrain organization, using cell density or density relations as criteria, offers a new perspective on structure-function relationship, unconstrained by traditional region boundaries.