Journal of neurotrauma
-
Journal of neurotrauma · May 2023
ReviewSpecies Differences in Blood Lymphocyte Responses After Spinal Cord Injury.
People with spinal cord injury (SCI) get recurrent infections, such as urinary tract infections (UTIs) and pneumonias, that cause mortality and worsen neurological recovery. Over the past decades, researchers have proposed that post-SCI lymphopenia and decreased lymphocyte function increase susceptibility to infections and worsen neurological outcome in humans, leading to a condition called SCI-induced immune depression syndrome (SCI-IDS). In this review, we explore how SCI affects blood lymphocyte homeostasis and function in humans and rodents. Understanding how SCI affects blood lymphocytes will help the management of recurrent infections in spinal cord injured people and shed light on the clinical translation of findings in animal models to humans.
-
Journal of neurotrauma · May 2023
ReviewThe dark side of an essential amino acid - L-arginine in spinal cord injury.
L-arginine is a semi-essential amino acid involved in a variety of physiological processes in the central nervous system (CNS). It is essential in the survival and functionality of neuronal cells. Nonetheless, L-arginine also has a dark side; it potentiates neuroinflammation and nitric oxide (NO) production, leading to secondary damage. ⋯ Similarly, L-arginine supplementation resulted in both negative and positive outcomes after SCI. However, new data indicate that arginine depletion substantially improves spinal cord regeneration after injury. Here, we review the challenging characteristics of L-arginine metabolism as a therapeutic target after SCI.
-
Journal of neurotrauma · May 2023
ReviewThe spinal cord-gut-immune axis and its implications on therapeutic development for spinal cord injury.
Spinal cord injury (SCI) affects ∼1,300,000 people living in the United States. Most research efforts have been focused on reversing paralysis, as this is arguably the most defining feature of SCI. The damage caused by SCI, however, extends past paralysis and includes other debilitating outcomes including immune dysfunction and gut dysbiosis. ⋯ One exciting avenue is the spinal cord-gut-immune axis, which proposes that gut dysbiosis amplifies lesion inflammation and impairs SCI recovery. This review will highlight the most recent findings regarding gut and immune dysfunction following SCI, and discuss how the central nervous system (CNS), gut, and immune system all coalesce to form a bidirectional axis that can impact SCI recovery. Finally, important considerations regarding how the spinal cord-gut-immune axis fits within the larger framework of therapeutic development (i.e., probiotics, fecal transplants, dietary modifications) will be discussed, emphasizing the lack of interdepartmental investigation and the missed opportunity to maximize therapeutic benefit in SCI.