Voprosy virusologii
-
Voprosy virusologii · Jan 2020
Review[Source of the COVID-19 pandemic: ecology and genetics of coronaviruses (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (subgenus Sarbecovirus), and MERS-CoV (subgenus Merbecovirus).]
Since the early 2000s, three novel zooanthroponous coronaviruses (Betacoronavirus) have emerged. The first outbreak of infection (SARS) caused by SARS-CoV virus occurred in the fall of 2002 in China (Guangdong Province). A second outbreak (MERS) associated with the new MERS-CoV virus appeared in Saudi Arabia in autumn 2012. ⋯ I. COVID-19 pandemic sources: origin, biology and genetics of coronaviruses of SARS-CoV, SARS-CoV-2, MERS-CoV (Conference hall of Presidium of RAS, 14 Leninsky Prospect, Moscow, Russia. April 16, 2020).
-
Voprosy virusologii · Jan 2020
Review[Etiology of epidemic outbreaks COVID-19 on Wuhan, Hubei province, Chinese People Republic associated with 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, Subgenus Sarbecovirus): lessons of SARS-CoV outbreak.]
Results of analysis of phylogenetic, virological, epidemiological, ecological, clinical data of COVID-19 outbreaks in Wuhan, China (PRC) in comparison with SARS-2002 and MERS-2012 outbreaks allow to conclude: - the etiological agent of COVID-19 is coronavirus (2019-CoV), phylogenetically close to the SARS-CoV, isolated from human, and SARS-related viruses isolated from bats (SARS-related bat CoV viruses). These viruses belong to the Sarbecovirus subgenus, Betacoronavirus genus, Orthocoronavirinae subfamily, Coronaviridae family (Cornidovirinea: Nidovirales). ⋯ An additional reservoir of the virus could be an intermediate animal species (snakes, civet, hedgehogs, badgers, etc.) that are infected by eating of infected bats. SARS-like coronaviruses circulated in bats in the interepidemic period (2003-2019); - seasonal coronaviruses (subgenus Duvinacovirus, Alphacoronavirus) are currently circulating (November 2019 - January 2020) in the European part of Russia, Urals, Siberia and the Far East of Russia, along with the influenza viruses A(H1N1)pdm09, A(H3N2), and В, as well as six other respiratory viruses (HPIV, HAdV, HRSV, HRV, HBoV, and HMPV).
-
Voprosy virusologii · Jan 2015
[The prevalence of the human rhinoviruses and coronaviruses circulating in the Moscow region during 2007-2012].
The rhinoviruses and coronaviruses are the most common causative agents of the acute upper respiratory tract infection in humans. They include several species that vary in the pathogenicity, some causing severe respiratory tract diseases. ⋯ For eight patients, the identity of the rhinoviruses, including 4 cases of HRV-C, 3 cases of HRV-A, and a single case of HRV-B, was corroborated using partial sequencing of the 5 non-coding regions and phylogenetic analysis. The viruses of HRV-C, HCoV-NL63, and HCoV-OC43 were prevalent in children with severe respiratory diseases.
-
Voprosy virusologii · May 2014
[Genetic characterization of the Sakhalin virus (SAKV), Paramushir virus (PMRV) (Sakhalin group, Nairovirus, Bunyaviridae), and Rukutama virus (RUKV) (Uukuniemi group, Phlebovirus, Bunyaviridae) isolated from the obligate parasites of the colonial sea-birds ticks Ixodes (Ceratixodes) uriae, White 1852 and I. signatus Birulya, 1895 in the water area of sea of the Okhotsk and Bering sea].
Full-length genomes of the Sakhalin virus (SAKH) and Paramushir virus (PRMV) (Sakhalin group, Nairovirus, Bunyaviridae) isolated from the ticks Ixodes uriae White 1852 were sequenced using the next-generation sequencing (Genbank ID: KF801659, KF801656). SAKV and PRMV have 81% identity for the part of RNA-dependent RNA-polymerase (RdRp) on the nucleotide level and 98.5% on the amino acid level. Full-length genome comparison shows that SAKV have, in average, from 25% (N-protein, S-segment) to 50% (RdRp, L-segment) similarity with the nairoviruses. ⋯ RUKV is closely related (93.0-95.5% similarity) with our previously described Komandory virus (KOMV). RUKV and KOMV form separate phylogenetic line neighbor of Manawa virus (MWAV) isolated from the ticks Argas abdussalami Hoogstraal et McCarthy, 1965 in Pakistan. The value of the similarity between RUCV and MWAV is 65-74% on the amino acid level.
-
Voprosy virusologii · May 2014
[Taxonomic status of the Chim virus (CHIMV) (Bunyaviridae, Nairovirus, Qalyub group) isolated from the Ixodidae and Argasidae ticks collected in the great gerbil (Rhombomys opimus Lichtenstein, 1823) (Muridae, Gerbillinae) burrows in Uzbekistan and Kazakhstan].
Full-length genome of the Chim virus (CHIMV) (strain LEIV-858Uz) was sequenced using the next-generation sequencing approach (ID GenBank: KF801656). The CHIMV/LEIV-858Uz was isolated from the Ornithodoros tartakovskyi Olenev, 1931 ticks collected in the great gerbil (Rhombomys opimus Lichtenstein, 1823) burrow in Uzbekistan near Chim town (Kashkadarinsky region) in July of 1971. Later, four more CHIMV strains were isolated from the O. tartakovskyi, O. papillipes Birula, 1895, Rhipicephalus turanicus Pomerantsev, 1936 collected in the great gerbil burrows in Kashkadarinsky, Bukhara, and Syrdarya regions of Uzbekistan, and three strains--from the Hyalomma asiaticum Schulze et Schlottke, 1930 from the great gerbil burrows in Dzheskazgan region of Kazakhstan. ⋯ The amino acid homology between the CHIMV and QYBV is 87% for the RdRp catalytic center (L-segment) that is coincident with both QYBV and CHIMV associated with the Ornithodoros ticks and burrow of rodents as well. The CHIMV homologies with other nairoviruses are 30-40% for the amino acid sequences of precursor polyprotein GnGc (M-segment), whereas 50%--for the nucleocapsid N (S-segment). The data obtained permit to classify the CHIMV as a member of the QYBV group in the genus of Nairovirus (Bunyaviridae).