Articles: sciatic-neuropathy-pathology.
-
Visceral sensory afferents during disease or following injury often produce vague, diffuse body sensations, and pain referred to somatic targets. Alternatively, injury due to trauma or disease of somatic nerve targets can also lead to referred pain in visceral targets via a somatovisceral reflex. Both phenomenons are thought to be due to convergence of visceral and somatic afferents within the spinal cord. ⋯ Focal demyelination of the sciatic nerve also increased the number of injured L₄L₅ and non-injured L₆-S₂ bladder-associated sensory neurons that responded to MCP1 and SDF1 when compared with sensory neurons derived from uninjured naïve and sham-injured control animals. Taken together, these data suggest that some visceral hypersensitivity states may have a somatic origin. More importantly, nociceptive somatovisceral sensation may be mediated by upregulation of chemokine signaling in visceral sensory neurons.
-
Insomnia is a common problem for people with chronic pain. Cortical GABAergic neurons are part of the neurobiological substrate that underlies homeostatic sleep regulation. In the present study, we confirmed that sciatic nerve ligation caused thermal hyperalgesia and tactile allodynia in mice. ⋯ These findings provide novel evidence that sciatic nerve ligation decreases extracellular-released GABA in the cingulate cortex of mice. These phenomena may, at least in part, explain the insomnia in patients with neuropathic pain. Neuropathic pain-like stimuli suppress the GABAergic transmission with increased GABA (γ-aminobutyric acid) transporters located on activated astrocytes in the cingulate cortex related to sleep disturbance.
-
Structural and functional plastic changes in the primary somatosensory cortex (S1) have been observed following peripheral nerve injury that often leads to neuropathic pain, which is characterized by tactile allodynia. However, remodeling of cortical connections following injury has been believed to take months or years; this is not temporally correlated with the rapid development of allodynia and S1 hyperexcitability. Here we first report, by using long-term two-photon imaging of postsynaptic dendritic spines in living adult mice, that synaptic connections in the S1 are rewired within days following sciatic nerve ligation through phase-specific and size-dependent spine survival/growth. ⋯ New spines that generated before nerve injury showed volume decrease after injury, whereas more new spines that formed in the early phase of neuropathic pain became persistent and substantially increased their volume during the late phase. Further, preexisting stable spines survived less following injury than controls, and such lost persistent spines were smaller in size than the surviving ones, which displayed long-term potentiation-like enlargement over weeks. These results suggest that peripheral nerve injury induces rapid and selective remodeling of cortical synapses, which is associated with neuropathic pain development, probably underlying, at least partially, long-lasting sensory changes in neuropathic subjects.
-
Patients with chronic pain often have accompanying cognitive deficiency, which may reduce their quality of life and hamper efficient medical treatment. Alteration of extracellular glycine concentration may affect cognitive function and spinal pain signaling. In the present study, we assessed recognition memory by novel-object recognition and found that mice developing mechanical hypersensitivity after peripheral nerve injury exhibited impaired recognition ability for novelty, which was never observed in mice provided the selective glycine transporter 1 (GlyT1) inhibitor N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS) systemically. ⋯ These findings imply that chronic pain has a crucial influence on hippocampal plasticity related to cognitive function, and strongly suggest that increasing the extracellular level of glycine via blockade of GlyT1 is a potential therapeutic approach for chronic pain with memory impairment. Chronic pain crucially influences hippocampal plasticity related to cognitive function. Increasing the extracellular level of glycine via blockade of GlyT1 is a potential therapeutic approach for chronic pain with memory impairment.
-
Activation of macrophages/microglia via toll-like receptors (TLRs) plays an important role in inflammation and host defense against pathogens. Pathogen-associated molecular patterns bind TLRs, thereby triggering NF-κB signaling and production of proinflammatory cytokines. Recent data suggest that nonpathogenic molecules resulting from trauma can also trigger inflammation via TLRs. ⋯ Paw withdrawal threshold and latency in response to mechanical and heat stimuli, respectively, decreased shortly after nerve lesion in wild type mice. In TLR2 KO mice, nerve injury-induced thermal hyperalgesia was completely abolished contrary to that seen in wild-type mice, whereas mechanical allodynia was partially reduced. We suggest that TLR2 is necessary for the development of neuropathic pain and its contribution is more important in thermal hypersensitivity than that of mechanical allodynia.