• Anesthesia and analgesia · Jul 2010

    Global warming potential of inhaled anesthetics: application to clinical use.

    • Susan M Ryan and Claus J Nielsen.
    • Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California 94143, USA. ryans@anesthesia.ucsf.edu
    • Anesth. Analg. 2010 Jul 1;111(1):92-8.

    BackgroundInhaled anesthetics are recognized greenhouse gases. Calculating their relative impact during common clinical usage will allow comparison to each other and to carbon dioxide emissions in general.MethodsWe determined infrared absorption cross-sections for sevoflurane and isoflurane. Twenty-year global warming potential (GWP(20)) values for desflurane, sevoflurane, and isoflurane were then calculated using the present and previously published infrared results, and best estimate atmospheric lifetimes were determined. The total quantity of each anesthetic used in 1 minimal alveolar concentration (MAC)-hour was then multiplied by the calculated GWP(20) for that anesthetic, and expressed as "carbon dioxide equivalent" (CDE(20)) in grams. Common fresh gas flows and carrier gases, both air/oxygen and nitrous oxide (N2O)/oxygen, were considered in the calculations to allow these examples to represent common clinical use of inhaled anesthetics.ResultsGWP(20) values for the inhaled anesthetics were: sevoflurane 349, isoflurane 1401, and desflurane 3714. CDE(20) values for 1 MAC-hour at 2 L fresh gas flow were: sevoflurane 6980 g, isoflurane 15,551 g, and desflurane 187,186 g. Comparison among these anesthetics produced a ratio of sevoflurane 1, isoflurane 2.2, and desflurane 26.8. When 60% N2O/40% oxygen replaced air/oxygen as a carrier gas combination, and inhaled anesthetic delivery was adjusted to deliver 1 MAC-hour of anesthetic, sevoflurane CDE(20) values were 5.9 times higher with N2O than when carried with air/O2, isoflurane values were 2.9 times higher, and desflurane values were 0.4 times lower. On a 100-year time horizon with 60% N2O, the sevoflurane CDE(100) values were 19 times higher than when carried in air/O2, isoflurane values were 9 times higher, and desflurane values were equal with and without N2O.ConclusionsUnder comparable and common clinical conditions, desflurane has a greater potential impact on global warming than either isoflurane or sevoflurane. N2O alone produces a sizable greenhouse gas contribution relative to sevoflurane or isoflurane. Additionally, 60% N2O combined with potent inhaled anesthetics to deliver 1 MAC of anesthetic substantially increases the environmental impact of sevoflurane and isoflurane, and decreases that of desflurane. N2O is destructive to the ozone layer as well as possessing GWP; it continues to have impact over a longer timeframe, and may not be an environmentally sound tradeoff for desflurane. From our calculations, avoiding N2O and unnecessarily high fresh gas flow rates can reduce the environmental impact of inhaled anesthetics.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    This article appears in the collection: What contribution does anesthesia make to climate change?.


    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..