Respiration; international review of thoracic diseases
-
Electrical impedance tomography (EIT) is able to detect variations in regional lung electrical impedance associated with changes in both air and blood content and potentially capable of assessing regional ventilation-perfusion relationships. However, regional lung perfusion is difficult to determine because the impedance changes synchronous with the heart rate are of very small amplitude. ⋯ Our results indicate that redistribution of regional lung perfusion can be assessed by EIT during one-lung ventilation. The performance of EIT in detecting changes in lung perfusion in even smaller lung regions remains to be established.
-
Smokers have higher incidences of pulmonary diseases. This increased susceptibility may result from cigarette smoke (CS)-induced impairment of the pulmonary immune system. However, the mechanism(s) is not fully understood. ⋯ These results suggest that the inhibition by CS-exposed AM of LPS-induced B lymphocyte proliferation may be caused by the increased superoxide and hydrogen peroxide generation of CS. Therefore, these immunological inhibitions by CS could be associated with increased risk of pulmonary diseases.
-
Resident tissue macrophages exert important functions during severe systemic infection and contribute to changes in local as well as systemic immune responses. Alveolar macrophages (AM) play a crucial role in airway diseases and in the defense against microorganisms invading the body via the bronchopulmonary tract. It has been postulated that AM are involved in the development of acute local disorders as a consequence of extrapulmonary stimuli like pancreatitis, peritonitis, or trauma. ⋯ Contrarily to other macrophage populations, AM do not significantly contribute to local and systemic cytokine release during polymicrobial abdominal sepsis. AM have important protective functions for local clearance of gut-derived bacteria and attenuation of lung injury.
-
Randomized Controlled Trial
Preserving oxygenation during walking in severe chronic obstructive pulmonary disease: noninvasive ventilation versus oxygen therapy.
Physical activity is known to cause significant deoxygenation in patients with severe chronic obstructive pulmonary disease (COPD). Although noninvasive positive pressure ventilation (NPPV) has been shown to improve oxygenation and physical activity in these patients, no practical approach for the application of NPPV during walking has yet been established. ⋯ NPPV plus supplemental oxygen, but not oxygen alone, preserves oxygenation during walking in patients with severe COPD. However, dyspnea and walking distance were not improved due to the burden of carrying the heavy ventilatory equipment in a backpack.
-
Clinical Trial
Accuracy of transcutaneous carbon dioxide tension measurements during cardiopulmonary exercise testing.
Measurements of transcutaneous carbon dioxide tension (PtcCO(2)) with current devices are proven to provide clinically acceptable agreement with measurements of partial arterial carbon dioxide tension (PaCO(2)) in several settings but not during cardiopulmonary exercise testing (CPET). ⋯ Transcutaneous estimations of PCO(2) and SpO(2) are accurate and can be used in CPET, circumvening the need for arterial cannulation.