Lancet neurology
-
Review Case Reports
Diagnosis of autism spectrum disorder: reconciling the syndrome, its diverse origins, and variation in expression.
Recent discoveries about the pathogenesis and symptom structure of autism spectrum disorders (ASDs) are challenging traditional nosology and driving efforts to reconceptualise the diagnosis of autism, a goal made all the more pressing by new prospects for early identification, targeted intervention, and personalised-medicine approaches to specific autistic syndromes. Recognition that ASD represents the severe end of a continuous distribution of social communication abilities in the general population has stimulated attempts to standardise the measurement of autistic traits and to set appropriate clinical thresholds for diagnosis. Over the next decade, rapid advances in our understanding of symptom structure and the diversity of causes of ASD could be incorporated into the next evolution in the diagnosis of autism, with important implications for research, clinical practice, public health, and policy. As differential effects of personalised therapies are identified in relation to specific causes of autism, the benefits of an updated diagnostic nosology will translate into the delivery of more effective care for patients.
-
Randomized Controlled Trial
Rivastigmine for gait stability in patients with Parkinson's disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial.
Falls are a frequent and serious complication of Parkinson's disease and are related partly to an underlying cholinergic deficit that contributes to gait and cognitive dysfunction in these patients. Gait dysfunction can lead to an increased variability of gait from one step to another, raising the likelihood of falls. In the ReSPonD trial we aimed to assess whether ameliorating this cholinergic deficit with the acetylcholinesterase inhibitor rivastigmine would reduce gait variability. ⋯ Parkinson's UK.
-
Metabolic changes incorporating fluctuations in weight, insulin resistance, and cholesterol concentrations have been identified in several neurodegenerative disorders. Whether these changes result from the neurodegenerative process affecting brain regions necessary for metabolic regulation or whether they drive the degenerative process is unknown. Emerging evidence from epidemiological, clinical, pathological, and experimental studies emphasises a range of changes in eating behaviours and metabolism in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ⋯ Furthermore, changes in eating behaviour that affect metabolism have been incorporated into the diagnostic criteria for FTD, which has some clinical and pathological overlap with ALS. Whether the distinct and shared metabolic and eating changes represent a component of the proposed spectrum of the two diseases is an intriguing possibility. Moreover, future research should aim to unravel the complex connections between eating, metabolism, and neurodegeneration in ALS and FTD, and aim to understand the potential for targeting modifiable risk factors in disease development and progression.