Lancet neurology
-
Multicenter Study
Diagnostic and prognostic performance and longitudinal changes in plasma neurofilament light chain concentrations in adults with Down syndrome: a cohort study.
Adults with Down syndrome are at an ultra-high risk of Alzheimer's disease, but diagnosis of Alzheimer's disease in this population is challenging. We aimed to validate the clinical utility of plasma neurofilament light chain (NfL) for the diagnosis of symptomatic Alzheimer's disease in Down syndrome, assess its prognostic value, and establish longitudinal changes in adults with Down syndrome. ⋯ AC Immune, La Caixa Foundation, Instituto de Salud Carlos III, National Institute on Aging, Wellcome Trust, Jérôme Lejeune Foundation, Medical Research Council, National Institute for Health Research, EU Joint Programme-Neurodegenerative Disease Research, Alzheimer's society, Deutsche Forschungsgemeinschaft, Stiftung für die Erforschung von Verhaltens und Umwelteinflüssen auf die menschliche Gesundheit, and NHS National Institute of Health Research Applied Research Collaborations East of England, UK.
-
Patients with isolated rapid-eye-movement sleep behaviour disorder (RBD) are commonly regarded as being in the early stages of a progressive neurodegenerative disease involving α-synuclein pathology, such as Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. Abnormal α-synuclein deposition occurs early in the neurodegenerative process across the central and peripheral nervous systems and might precede the appearance of motor symptoms and cognitive decline by several decades. These findings provide the rationale to develop reliable biomarkers that can better predict conversion to clinically manifest α-synucleinopathies. In addition, biomarkers of disease progression will be essential to monitor treatment response once disease-modifying therapies become available, and biomarkers of disease subtype will be essential to enable prediction of which subtype of α-synucleinopathy patients with isolated RBD might develop.