Lancet neurology
-
Debate is ongoing regarding when, why, and how to initiate pharmacotherapy for Parkinson's disease. Early initiation of dopaminergic therapies does not convey disease-modifying effects but does reduce disability. Concerns about the development of motor complications arising from the early initiation of levodopa, which led to misconceived levodopa-sparing strategies, have been largely mitigated by the outcomes of the PD MED and Levodopa in Early Parkinson's Disease (LEAP) studies. ⋯ Until more effective methods of providing stable dopamine concentrations are developed, current evidence supports the use of levodopa as initial symptomatic treatment in most patients with Parkinson's disease, starting with low doses and titrating to therapeutic threshold. Monoamine oxidase-B inhibitors and dopamine agonists can be reserved as potential adjunct treatments later in the disease course. Future research will need to establish effective disease-modifying treatments, address whether patients' quality of life is substantially improved with early initiation of treatment rather than a wait and watch strategy, and establish whether new levodopa formulations will delay onset of dyskinesia.
-
Autism is both a medical condition that gives rise to disability and an example of human variation that is characterised by neurological and cognitive differences. The goal of evidence-based intervention and support is to alleviate distress, improve adaptation, and promote wellbeing. Support should be collaborative, with autistic individuals, families, and service providers taking a shared decision-making approach to maximise the individual's potential, minimise barriers, and optimise the person-environment fit. ⋯ Augmentative and alternative communication interventions show preliminary evidence of benefit in minimising communication barriers. Co-occurring health issues, such as epilepsy and other neurodevelopmental disorders, sleep problems, and mental health challenges, should be treated in a timely fashion. The creation of autism-friendly contexts is best achieved by supporting families, reducing stigma, enhancing peer understanding, promoting inclusion in education, the community, and at work, and through advocacy.
-
Mobile health technologies (wearable, portable, body-fixed sensors, or domestic-integrated devices) that quantify mobility in unsupervised, daily living environments are emerging as complementary clinical assessments. Data collected in these ecologically valid, patient-relevant settings can overcome limitations of conventional clinical assessments, as they capture fluctuating and rare events. ⋯ These differences appear to be affected by psychological, physiological, cognitive, environmental, and technical factors, and by the types of mobilities and diagnoses assessed. To facilitate the successful adaptation of the unsupervised assessment of mobility into clinical practice and clinical trials, clinicians and researchers should consider these disparities and the multiple factors that contribute to them.
-
Oral treatment options for disease-modifying therapy in relapsing multiple sclerosis have substantially increased over the past decade with four approved oral compounds now available: fingolimod, dimethyl fumarate, teriflunomide, and cladribine. Although these immunomodulating therapies are all orally administered, and thus convenient for patients, they have different modes of action. These distinct mechanisms of action allow better adaption of treatments according to individual comorbidities and offer different mechanisms of treatment such as inhibition of immune cell trafficking versus immune cell depletion, thereby substantially expanding the available treatment options. ⋯ New sphingosine-1-phosphate receptor (S1PR) modulators with more specific S1PR target profiles and potentially better safety profiles compared with fingolimod were tested in patients with relapsing multiple sclerosis. For example, siponimod, which targets S1PR1 and S1PR5, was approved in March, 2019, by the US Food and Drug Administration for the treatment of relapsing multiple sclerosis including active secondary progressive multiple sclerosis. Ozanimod, another S1P receptor modulator in the approval stage that also targets S1PR1 and S1PR5, reduced relapse rates and MRI activity in two phase 3 trials of patients with relapsing multiple sclerosis. Blocking of matrix metalloproteinases or tyrosine kinases are novel modes of action in the treatment of relapsing multiple sclerosis, which are exhibited by minocycline and evobrutinib, respectively. Minocycline reduced conversion to multiple sclerosis in patients with a clinically isolated syndrome. Evobrutinib reduced MRI activity in a phase 2 trial, and a phase 3 trial is underway, in patients with relapsing multiple sclerosis. Diroximel fumarate is metabolised to monomethyl fumarate, the active metabolite of dimethyl fumarate, reduces circulating lymphocytes and modifies the activation profile of monocytes, and is being tested in this disease with the aim to improve gastrointestinal tolerability. The oral immunomodulator laquinimod did not reach the primary endpoint of reduction in confirmed disability progression in a phase 3 trial of patients with relapsing multiple sclerosis. In a phase 2 trial of patients with primary progressive multiple sclerosis, laquinimod also did not reach the primary endpoint of a reduction in brain volume loss, as a consequence the development of this drug will probably not be continued in multiple sclerosis. WHERE NEXT?: Several new oral compounds are in late-stage clinical development. With new modes of action introduced to the treatment of multiple sclerosis, the question of how to select and sequence different treatments in individual patients arises. Balancing risks with the expected efficacy of disease-modifying therapies will still be key for treatment selection. However, risks as well as efficacy can change when moving from the controlled clinical trial setting to clinical practice. Because some oral treatments, such as cladribine, have long-lasting effects on the immune system, the cumulative effects of sequential monotherapies can resemble the effects of a concurrent combination therapy. This treatment scheme might lead to higher efficacy but also to new safety concerns. These sequential treatments were largely excluded in phase 2 and 3 trials; therefore, monitoring both short-term and long-term effects of sequential disease-modifying therapies in phase 4 studies, cohort studies, and registries will be necessary.
-
Review Meta Analysis
Interpretation of risk loci from genome-wide association studies of Alzheimer's disease.
Alzheimer's disease is a debilitating and highly heritable neurological condition. As such, genetic studies have sought to understand the genetic architecture of Alzheimer's disease since the 1990s, with successively larger genome-wide association studies (GWAS) and meta-analyses. These studies started with a small sample size of 1086 individuals in 2007, which was able to identify only the APOE locus. In 2013, the International Genomics of Alzheimer's Project (IGAP) did a meta-analysis of all existing GWAS using data from 74 046 individuals, which stood as the largest Alzheimer's disease GWAS until 2018. This meta-analysis discovered 19 susceptibility loci for Alzheimer's disease in populations of European ancestry. ⋯ Three new Alzheimer's disease GWAS published in 2018 and 2019, which used larger sample sizes and proxy phenotypes from biobanks, have substantially increased the number of known susceptibility loci in Alzheimer's disease to 40. The first, an updated GWAS from IGAP, included 94 437 individuals and discovered 24 susceptibility loci. Although IGAP sought to increase sample size by recruiting additional clinical cases and controls, the two other studies used parental family history of Alzheimer's disease to define proxy cases and controls in the UK Biobank for a genome-wide association by proxy, which was meta-analysed with data from GWAS of clinical Alzheimer's disease to attain sample sizes of 388 324 and 534 403 individuals. These two studies identified 27 and 29 susceptibility loci, respectively. However, the three studies were not independent because of the large overlap in their participants, and interpretation can be challenging because different variants and genes were highlighted by each study, even in the same locus. Furthermore, neither the variant with the strongest Alzheimer's disease association nor the nearest gene are necessarily causal. This situation presents difficulties for experimental studies, drug development, and other future research. WHERE NEXT?: The ultimate goal of understanding the genetic architecture of Alzheimer's disease is to characterise novel biological pathways that underly Alzheimer's disease pathogenesis and to identify novel drug targets. GWAS have successfully contributed to the characterisation of the genetic architecture of Alzheimer's disease, with the identification of 40 susceptibility loci; however, this does not equate to the discovery of 40 Alzheimer's disease genes. To identify Alzheimer's disease genes, these loci need to be mapped to variants and genes through functional genomics studies that combine annotation of variants, gene expression, and gene-based or pathway-based analyses. Such studies are ongoing and have validated several genes at Alzheimer's disease loci, but greater sample sizes and cell-type specific data are needed to map all GWAS loci.