Lancet neurology
-
A growing awareness about brain health and Alzheimer's disease in the general population is leading to an increasing number of cognitively unimpaired individuals, who are concerned that they have reduced cognitive function, to approach the medical system for help. The term subjective cognitive decline (SCD) was conceived in 2014 to describe this condition. ⋯ An individually tailored diagnostic process might be reasonable to identify or exclude underlying medical conditions in an individual with SCD who actively seeks medical help. An increasing number of studies are investigating the link between SCD and the very early stages of Alzheimer's disease and other neurodegenerative diseases.
-
Dementia with Lewy bodies and Parkinson's disease dementia, jointly known as Lewy body dementia, are common neurodegenerative conditions. Patients with Lewy body dementia present with a wide range of cognitive, neuropsychiatric, sleep, motor, and autonomic symptoms. Presentation varies between patients and can vary over time within an individual. ⋯ Clinical trials and meta-analyses now provide an evidence base for the treatment of cognitive, neuropsychiatric, and motor symptoms in patients with Lewy body dementia. Furthermore, consensus opinion from experts supports the application of treatments for related conditions, such as Parkinson's disease, for the management of common symptoms (eg, autonomic dysfunction) in patients with Lewy body dementia. However, evidence gaps remain and future clinical trials need to focus on the treatment of symptoms specific to patients with Lewy body dementia.
-
Research into the role of the gut microbiome in modulating brain function has rapidly increased over the past 10 years, albeit chiefly in animal models. Increasing clinical and preclinical evidence implicates the microbiome as a possible key susceptibility factor for neurological disorders, including Alzheimer's disease, autism spectrum disorder, multiple sclerosis, Parkinson's disease, and stroke. ⋯ Longitudinal studies and randomised controlled trials in humans are needed to find out if targeting the microbiome can yield novel therapeutic strategies. Systems biology approaches will also be important in integrating such data with genomic and metabolomic datasets from clinical cohorts with neurological disease to help guide individual treatment selection.
-
Parkinson's disease is a complex neurodegenerative disorder for which both rare and common genetic variants contribute to disease risk, onset, and progression. Mutations in more than 20 genes have been associated with the disease, most of which are highly penetrant and often cause early onset or atypical symptoms. Although our understanding of the genetic basis of Parkinson's disease has advanced considerably, much remains to be done. ⋯ However, most of them have been identified in patients of European ancestry and we know relatively little of the genetics of Parkinson's disease in other populations. We have a limited understanding of the biological functions of the risk alleles that have been identified, although Parkinson's disease risk variants appear to be in close proximity to known Parkinson's disease genes and lysosomal-related genes. In the past decade, multiple efforts have been made to investigate the genetic architecture of Parkinson's disease, and emerging technologies, such as machine learning, single-cell RNA sequencing, and high-throughput screens, will improve our understanding of genetic risk.
-
Genomics now has an increasingly important role in neurology clinics. Regarding the epilepsies, innovations centred around technology, analytics, and collaboration have led to remarkable progress in gene discovery and have revealed the diverse array of genetic mechanisms and neurobiological pathways that contribute to these disorders. ⋯ Genetic epilepsy diagnoses now directly affect clinical care, and their importance will only increase as new targeted treatments continue to emerge. At the same time, new genetic insights challenge us to move from a deterministic view of genetic changes to a more nuanced appreciation of genetic risk within complex neurobiological systems that give rise to epilepsy.