Lancet neurology
-
Stroke, a leading cause of long-term disability and death worldwide, has a heritable component. Recent gene discovery efforts have expanded the number of known single-gene disorders associated with stroke and have linked common variants at approximately 35 genetic loci to stroke risk. ⋯ Genome-wide polygenic scores enable the identification of high-risk individuals before the emergence of vascular risk factors. Challenges ahead include a better understanding of rare variants and ancestral differences for integration of genetics into precision medicine, integration with other omics data, uncovering the genetic factors that govern stroke recurrence and stroke outcome, and the conversion of genetic discoveries to novel therapies.
-
Stroke represents a massive public health problem. Carotid atherosclerosis plays a fundamental part in the occurence of ischaemic stroke. European and US guidelines for prevention of stroke in patients with carotid plaques are based on quantification of the percentage reduction in luminal diameter due to the atherosclerotic process to select the best therapeutic approach. ⋯ Advances in imaging techniques have enabled routine characterisation and detection of the features of carotid plaque vulnerability. Intraplaque haemorrhage is accepted by neurologists and radiologists as one of the features of vulnerable plaques, but other characteristics-eg, plaque volume, neovascularisation, and inflammation-are promising as biomarkers of carotid plaque vulnerability. These biomarkers could change current management strategies based merely on the degree of stenosis.
-
The management of patients with severe brain injuries and prolonged disorders of consciousness raises important issues particularly with respect to their therapeutic options. The scarcity of treatment options is challenged by new clinical and neuroimaging data indicating that some patients with prolonged disorders of consciousness might benefit from therapeutic interventions, even years after the injury. ⋯ However, only two studies on amantadine and transcranial direct current stimulation provided class II evidence. Although new therapeutic approaches seem to be valuable for patients with prolonged disorders of consciousness, optimised stimulation parameters, alternative drugs, or rehabilitation strategies still need to be tested and validated to improve rehabilitation and the quality of life of these patients.
-
In the management of Parkinson's disease, reliable diagnostic and prognostic biomarkers are urgently needed. The diagnosis of Parkinson's disease mostly relies on clinical symptoms, which hampers the detection of the earliest phases of the disease-the time at which treatment with forthcoming disease-modifying drugs could have the greatest therapeutic effect. Reliable prognostic markers could help in predicting the response to treatments. ⋯ With respect to early diagnosis, the measurement of CSF α-synuclein aggregates is providing encouraging preliminary results. Blood α-synuclein species and neurofilament light chain are also under investigation because they would provide a non-invasive tool, both for early and differential diagnosis of Parkinson's disease versus atypical parkinsonian disorders, and for disease monitoring. In view of adopting CSF and blood biomarkers for improving Parkinson's disease diagnostic and prognostic accuracy, further validation in large independent cohorts is needed.
-
Next-generation sequencing technologies allow for rapid and inexpensive large-scale genomic analysis, creating unprecedented opportunities to integrate genomic data into the clinical diagnosis and management of neurological disorders. However, the scale and complexity of these data make them difficult to interpret and require the use of sophisticated bioinformatics applied to extensive datasets, including whole exome and genome sequences. ⋯ However, despite numerous studies that show the efficacy of next-generation sequencing in establishing molecular diagnoses, pathogenic mutations are generally identified in fewer than half of all patients with genetic neurological disorders, exposing considerable gaps in the understanding of the human genome and providing opportunities to focus research on improving the usefulness of genomics in clinical practice. Looking forward, the emergence of precision health in neurological care will increasingly apply genomic data analysis to pharmacogenetics, preventive medicine, and patient-targeted therapies.