Lancet neurology
-
Neuroimmunology research and development has been marked by substantial advances, particularly in the treatment of neuroimmunological diseases, such as multiple sclerosis, myasthenia gravis, neuromyelitis optica spectrum disorders, and myelin oligodendrocyte glycoprotein antibody disease. With more than 20 drugs approved for multiple sclerosis alone, treatment has become more personalised. The approval of disease-modifying therapies, particularly those targeting B cells, has highlighted the role of immunotherapeutic interventions in the management of these diseases. Despite these successes, challenges remain, particularly for patients who do not respond to conventional therapies, underscoring the need for innovative approaches. ⋯ The approval of monoclonal antibodies, such as ocrelizumab and ofatumumab, which target CD20, and inebilizumab, which targets CD19, for the treatment of various neuroimmunological diseases reflects progress in the understanding and management of B-cell activity. However, the limitations of these therapies in halting disease progression or activity in patients with multiple sclerosis or neuromyelitis optica spectrum disorders have prompted the exploration of cell-based therapies, particularly chimeric antigen receptor (CAR) T cells. Initially successful in the treatment of B cell-derived malignancies, CAR T cells offer a novel therapeutic mechanism by directly targeting and eliminating B cells, potentially overcoming the shortcomings of antibody-mediated B cell depletion. WHERE NEXT?: The use of CAR T cells in autoimmune diseases and B cell-driven neuroimmunological diseases shows promise as a targeted and durable option. CAR T cells act autonomously, penetrating deep tissue and effectively depleting B cells, especially in the CNS. Although the therapeutic potential of CAR T cells is substantial, their application faces hurdles such as complex logistics and management of therapy-associated toxic effects. Ongoing and upcoming clinical trials will be crucial in determining the safety, efficacy, and applicability of CAR T cells. As research progresses, CAR T cell therapy has the potential to transform treatment for patients with neuroimmunological diseases. It could offer extended periods of remission and a new standard in the management of autoimmune and neuroimmunological disorders.
-
Epilepsy diagnosis is often delayed or inaccurate, exposing people to ongoing seizures and their substantial consequences until effective treatment is initiated. Important factors contributing to this problem include delayed recognition of seizure symptoms by patients and eyewitnesses; cultural, geographical, and financial barriers to seeking health care; and missed or delayed diagnosis by health-care providers. Epilepsy diagnosis involves several steps. ⋯ Clinical history, elicited from patients and eyewitnesses, is a fundamental component of the diagnostic pathway. Recent technological advances, including smartphone videography and genetic testing, are increasingly used in routine practice. Innovations in technology, such as artificial intelligence, could provide new possibilities for directly and indirectly detecting epilepsy and might make valuable contributions to diagnostic algorithms in the future.
-
Review
Complex regional pain syndrome: advances in epidemiology, pathophysiology, diagnosis, and treatment.
Complex regional pain syndrome (CRPS) is a rare pain disorder that usually occurs in a limb after trauma. The features of this disorder include severe pain and sensory, autonomic, motor, and trophic abnormalities. Research from the past decade has offered new insights into CRPS epidemiology, pathophysiology, diagnosis, and treatment. ⋯ Procedures for diagnosis have also been clarified. Although effective treatment of CRPS remains a challenge, evidence-based integrated management approaches provide new opportunities to improve patient care. Further advances in diagnosis and treatment of CRPS will require coordinated, international multicentre initiatives.
-
Progressive multifocal leukoencephalopathy is a rare but devastating demyelinating disease caused by the JC virus (JCV), for which no therapeutics are approved. To make progress towards addressing this unmet medical need, innovations in clinical trial design are needed. ⋯ Specifically, JCV DNA in CSF could be used in clinical trials as an entry criterion, stratification factor, or predictor of clinical outcomes. Insights from the investigation of candidate biomarkers for progressive multifocal leukoencephalopathy might inform approaches to biomarker development for other rare diseases.
-
Atrial fibrillation is one of the most common cardiac arrhythmias and is a major cause of ischaemic stroke. Recent findings indicate the importance of atrial fibrillation burden (device-detected, subclinical, or paroxysmal and persistent or permanent) and whether atrial fibrillation was known before stroke onset or diagnosed after stroke for the risk of recurrence. Secondary prevention in patients with atrial fibrillation and stroke aims to reduce the risk of recurrent ischaemic stroke. ⋯ Secondary prevention strategies in patients with atrial fibrillation who have a stroke despite oral anticoagulation therapy is an unmet medical need. Research advances suggest a heterogeneous spectrum of causes, and ongoing trials are investigating new approaches for secondary prevention in this vulnerable patient group. In patients with atrial fibrillation and a history of intracerebral haemorrhage, the latest data from randomised controlled trials on stroke prevention shows that oral anticoagulation reduces the risk of ischaemic stroke but more data are needed to define the safety profile.