Lancet neurology
-
The cause of multiple sclerosis is believed to involve environmental exposure and genetic susceptibility. We aimed to summarise the environmental risk factors that have been studied in relation to onset of multiple sclerosis, assess whether there is evidence for diverse biases in this literature, and identify risk factors without evidence of biases. ⋯ None.
-
Multicenter Study
Development and validation of nomograms to provide individualised predictions of seizure outcomes after epilepsy surgery: a retrospective analysis.
Half of patients who have resective brain surgery for drug-resistant epilepsy have recurrent postoperative seizures. Although several single predictors of seizure outcome have been identified, no validated method incorporates a patient's complex clinical characteristics into an instrument to predict an individual's post-surgery seizure outcome. ⋯ Cleveland Clinic Epilepsy Center.
-
Identification of causative genes in mendelian forms of Parkinson's disease is valuable for understanding the cause of the disease. We did genetic studies in a Japanese family with autosomal dominant Parkinson's disease to identify novel causative genes. ⋯ Japan Society for the Promotion of Science; Japanese Ministry of Education, Culture, Sports, Science and Technology; Japanese Ministry of Health, Labour and Welfare; Takeda Scientific Foundation; Cell Science Research Foundation; and Nakajima Foundation.
-
In patients with multiple sclerosis (MS), grey matter damage is widespread and might underlie many of the clinical symptoms, especially cognitive impairment. This relation between grey matter damage and cognitive impairment has been lent support by findings from clinical and MRI studies. However, many aspects of cognitive impairment in patients with MS still need to be characterised. ⋯ Imaging measures of both lesioned and normal-appearing white matter lend support to the hypothesis of the existence of an underlying disconnection syndrome that causes clinical symptoms to trigger. Findings on cortical reorganisation support the contribution of brain plasticity and cognitive reserve in limiting cognitive deficits. The development of clinical and imaging biomarkers that can monitor disease development and treatment response is crucial to allow early identification of patients with MS who are at risk of cognitive impairment.