European journal of nuclear medicine and molecular imaging
-
Eur. J. Nucl. Med. Mol. Imaging · Aug 2016
Imaging in-vivo tau pathology in Alzheimer's disease with THK5317 PET in a multimodal paradigm.
The aim of this study was to explore the cerebral distribution of the tau-specific PET tracer [(18)F]THK5317 (also known as (S)-[(18)F]THK5117) retention in different stages of Alzheimer's disease; and study any associations with markers of hypometabolism and amyloid-beta deposition. ⋯ The tau-specific PET tracer [(18)F]THK5317 images in vivo the expected regional distribution of tau pathology. This distribution contrasts with the different patterns of hypometabolism and amyloid-beta deposition.
-
Eur. J. Nucl. Med. Mol. Imaging · Aug 2016
Association between partial-volume corrected SUVmax and Oncotype DX recurrence score in early-stage, ER-positive/HER2-negative invasive breast cancer.
Oncotype DX, a 21-gene expression assay, provides a recurrence score (RS) which predicts prognosis and the benefit from adjuvant chemotherapy in patients with early-stage, estrogen receptor-positive (ER-positive), and human epidermal growth factor receptor 2-negative (HER2-negative) invasive breast cancer. However, Oncotype DX tests are expensive and not readily available in all institutions. The purpose of this study was to investigate whether metabolic parameters on (18)F-FDG PET/CT are associated with the Oncotype DX RS and whether (18)F-FDG PET/CT can be used to predict the Oncotype DX RS. ⋯ High PVC-SUVmax on (18)F-FDG PET/CT was significantly associated with an intermediate-to-high Oncotype DX RS. PVC metabolic parameters on (18)F-FDG PET/CT can be used to predict the Oncotype DX RS in patients with early-stage, ER-positive/HER2-negative breast cancer.
-
Eur. J. Nucl. Med. Mol. Imaging · Aug 2016
Comparative StudyDirect comparison of (68)Ga-DOTA-TOC and (18)F-FDG PET/CT in the follow-up of patients with neuroendocrine tumour treated with the first full peptide receptor radionuclide therapy cycle.
To determine the value of (68)Ga-DOTA-TOC and (18)F-FDG PET/CT for initial and follow-up evaluation of patients with neuroendocrine tumour (NET) treated with peptide receptor radionuclide therapy (PRRT). ⋯ In NET patients, the presence of (18)F-FDG-positive tumours correlates strongly with a higher risk of progression. Initially, patients with (18)F-FDG-negative NET may show (18)F-FDG-positive tumours during follow-up. Also patients with grade 1 and grade 2 NET may have (18)F-FDG-positive tumours. Therefore, (18)F-FDG PET/CT is a complementary tool to (68)Ga-DOTA-TOC PET/CT with clinical relevance for molecular investigation.
-
The radionuclide bone scan is the cornerstone of skeletal nuclear medicine imaging. Bone scintigraphy is a highly sensitive diagnostic nuclear medicine imaging technique that uses a radiotracer to evaluate the distribution of active bone formation in the skeleton related to malignant and benign disease, as well as physiological processes. ⋯ The present guidelines offer assistance to nuclear medicine practitioners in optimizing the diagnostic procedure and interpreting bone scintigraphy. These guidelines describe the protocols that are currently accepted and used routinely, but do not include all existing procedures. They should therefore not be taken as exclusive of other nuclear medicine modalities that can be used to obtain comparable results. It is important to remember that the resources and facilities available for patient care may vary.
-
Eur. J. Nucl. Med. Mol. Imaging · Jul 2016
FDG PET/CT texture analysis for predicting the outcome of lung cancer treated by stereotactic body radiation therapy.
With (18)F-FDG PET/CT, tumor uptake intensity and heterogeneity have been associated with outcome in several cancers. This study aimed at investigating whether (18)F-FDG uptake intensity, volume or heterogeneity could predict the outcome in patients with non-small cell lung cancers (NSCLC) treated by stereotactic body radiation therapy (SBRT). ⋯ The textural feature dissimilarity measured on the baseline (18)F-FDG PET/CT appears to be a strong independent predictor of the outcome in patients with NSCLC treated by SBRT. This may help selecting patients who may benefit from closer monitoring and therapeutic optimization.