Traffic injury prevention
-
Traffic injury prevention · Jan 2015
Teen Drivers' Perceptions of Inattention and Cell Phone Use While Driving.
Inattention to the roadway, including cell phone use while driving (cell phone calls, sending and reading texts, mobile app use, and Internet use), is a critical problem for teen drivers and increases risk for crashes. Effective behavioral interventions for teens are needed in order to decrease teen driver inattention related to cell phone use while driving. However, teens' perceptions of mobile device use while driving is a necessary component for theoretically driven behavior change interventions. The purpose of this study was to describe teen drivers' perceptions of cell phone use while driving in order to inform future interventions to reduce risky driving. ⋯ Cell phone use while driving is a contributor to motor vehicle crashes in teens, and effective interventions to decrease risks are needed. Teens viewed some types of cell phone use as unsafe and describe methods in which they control their behaviors. However, some of their methods still take attention off the primary task of driving. Teens could benefit from behavior change interventions that propose strategies to promote focused attention on the roadway at all times during the driving trip.
-
Traffic injury prevention · Jan 2015
Driving fatigue in professional drivers: a survey of truck and taxi drivers.
Fatigue among truck drivers has been studied extensively; however, less is known regarding the fatigue experience of taxi drivers in heavily populated metropolitan areas. This study aimed to compare the differences and similarities between truck and taxi driver fatigue to provide implications for the fatigue management and education of professional drivers. ⋯ This study provides knowledge on truck and taxi drivers' characteristics in fatigue experience, fatigue attitude, and fatigue countermeasures, and these findings have practical implications for the fatigue management and education of professional drivers.
-
Traffic injury prevention · Jan 2015
Creating pedestrian crash scenarios in a driving simulator environment.
In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 ). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track. ⋯ Crash analyses can be used to construct test scenarios for driver behavior evaluations using driving simulators. By considering trajectories, roadway, and environmental conditions of real-world crashes, representative virtual scenarios can serve as safe test beds for advanced driver assistance systems. The results of such research can be used to inform pedestrian crash avoidance/mitigation systems by identifying driver error, driver response time, and driver response choice (i.e., steering vs. braking).
-
Traffic injury prevention · Jan 2015
Older Adults at Increased Risk as Pedestrians in Victoria, Australia: An Examination of Crash Characteristics and Injury Outcomes.
Engaging in active transport modes (especially walking) is a healthy and environmentally friendly alternative to driving and may be particularly beneficial for older adults. However, older adults are a vulnerable group: they are at higher risk of injury compared with younger adults, mainly due to frailty and may be at increased risk of collision due to the effects of age on sensory, cognitive, and motor abilities. Moreover, our population is aging, and there is a trend for the current cohort of older adults to maintain mobility later in life compared with previous cohorts. Though these trends have serious implications for transport policy and safety, little is known about the contributing factors and injury outcomes of pedestrian collision. Further, previous research generally considers the older population as a homogeneous group and rarely considers the increased risks associated with continued ageing. ⋯ This analysis revealed age differences in collision risk and injury outcomes among older adults and that aggregate analysis of older pedestrians can distort the significance of risk factors associated with older pedestrian injuries. These findings have implications that extend to the development of engineering, behavioral, and enforcement countermeasures to address the problems faced by the oldest pedestrians and reduce collision risk and improve injury outcomes.
-
Traffic injury prevention · Jan 2015
Real-World Rib Fracture Patterns in Frontal Crashes in Different Restraint Conditions.
The purpose of this study was to use the detailed medical injury information in the Crash Injury Research and Engineering Network (CIREN) to evaluate patterns of rib fractures in real-world crash occupants in both belted and unbelted restraint conditions. Fracture patterns binned into rib regional levels were examined to determine normative trends associated with belt use and other possible contributing factors. ⋯ Results of this study confirmed with real-world data that rib fracture patterns in unbelted occupants were more distributed and symmetric across the thorax compared to belted occupants in crashes with a deployed frontal airbag. Other factors, such as occupant kinematics and occupant age, also produced differing patterns of fractures. Normative data on rib fracture patterns in real-world occupants can contribute to understanding injury mechanisms and the role of different causation factors, which can ultimately help prevent fractures and improve vehicle safety.