Neurocritical care
-
The metabolic response to injury is well described; however, very little is understood about optimal markers to measure this response. This summary will address the current evidence about monitoring nutritional status including blood glucose after acute brain injury (ABI). An electronic literature search was conducted for English language articles describing the testing, utility, and optimal methods to measure nutritional status and blood glucose levels in the neurocritical care population. ⋯ However, the optimal frequency or duration for blood glucose monitoring after ABI remains poorly defined. There are significant knowledge gaps about monitoring nutritional status and response to nutritional interventions in ABI; these need to be addressed and hence few recommendations can be made. The optimal frequency and duration of blood glucose monitoring need further study.
-
Molecular biomarkers have revolutionalized diagnosis and treatment of many diseases, such as troponin use in myocardial infarction. Urgent need for high-fidelity biomarkers in neurocritical care has resulted in numerous studies reporting potential candidate biomarkers. ⋯ Current studies vary significantly in patient selection, biosample collection/processing, and biomarker measurement protocols, thereby limiting the generalizability of overall results. Future large prospective studies with standardized treatment, biosample collection, and biomarker measurement and validation protocols are necessary to identify high-fidelity biomarkers in neurocritical care.
-
A variety of technologies have been developed to assist decision-making during the management of patients with acute brain injury who require intensive care. A large body of research has been generated describing these various technologies. ⋯ This supplement contains a Consensus Summary Statement with recommendations and individual topic reviews on physiologic processes important in the care of acute brain injury. In this article we provide the evidentiary tables for select topics including systemic hemodynamics, intracranial pressure, brain and systemic oxygenation, EEG, brain metabolism, biomarkers, processes of care and monitoring in emerging economies to provide the clinician ready access to evidence that supports recommendations about neuromonitoring.
-
Careful patient monitoring using a variety of techniques including clinical and laboratory evaluation, bedside physiological monitoring with continuous or non-continuous techniques and imaging is fundamental to the care of patients who require neurocritical care. How best to perform and use bedside monitoring is still being elucidated. ⋯ This supplement contains a Consensus Summary Statement with recommendations and individual topic reviews as a background to the recommendations. In this article, we highlight the recommendations and provide additional conclusions as an aid to the reader and to facilitate bedside care.
-
The goal of multimodality neuromonitoring is to provide continuous, real-time assessment of brain physiology to prevent, detect, and attenuate secondary brain injury. Clinical informatics deals with biomedical data, information, and knowledge including their acquisition, storage, retrieval, and optimal use for clinical decision-making. An electronic literature search was conducted for English language articles describing the use of informatics in the intensive care unit setting from January 1990 to August 2013. ⋯ Ergonomic data display that present results from analyses with clinical information in a sensible uncomplicated manner improve clinical decision-making. Collecting and archiving the highest resolution physiologic and phenotypic data in a comprehensive open format data warehouse is a crucial first step toward information management and two-way translational research for multimodality monitoring. The infrastructure required is largely the same as that needed for telemedicine intensive care applications, which under the right circumstances improves care quality while reducing cost.