Neurocritical care
-
Cardiac dysfunction is common in the days after severe traumatic brain injury (TBI) and may contribute to hypotension episodes, leading to worse outcomes. Little is known about cardiac function in the minutes and hours immediately following TBI. By using fluid percussion TBI in a swine model, we aimed to characterize the immediate post injury cardiac function. ⋯ Traumatic brain injury is associated with cardiac dysfunction and increased mortality, however there is still a limited understanding of the hemodynamic and echocardiographic response associated with TBI. In this study we demonstrate the hemodynamic and echocardiographic changes in the early stages of TBI in swine. The authors hope that these results may help better understanding on the management of patients with severe head injury.
-
Continuous multimodal monitoring in neurocritical care provides valuable insights into the dynamics of the injured brain. Unfortunately, the "readiness" of this data for robust artificial intelligence (AI) and machine learning (ML) applications is low and presents a significant barrier for advancement. Harmonization standards and tools to implement those standards are key to overcoming existing barriers. Consensus in our professional community is essential for success.
-
Blood pressure variability (BPV) is associated with outcome after endovascular thrombectomy in acute large vessel occlusion stroke. We aimed to provide the optimal sampling frequency and BPV index for outcome prediction by using high-resolution blood pressure (BP) data. ⋯ Using high-resolution BP data of 1 Hz, downsampling by averaging all BP values within 5-min intervals is essential to find relevant differences in systolic BPV, as noise can be avoided (confirmed by the significance of the power of midrange frequencies). These results demonstrate how high-resolution BP data can be processed for effective outcome prediction.
-
Cerebral blood flow (CBF) plays an important role in neurological recovery after cardiac arrest (CA) resuscitation. However, the variations of CBF recovery in distinct brain regions and its correlation with neurologic recovery after return of spontaneous circulation (ROSC) have not been characterized. This study aimed to investigate the characteristics of regional cerebral reperfusion following resuscitation in predicting neurological recovery. ⋯ Early magnetic resonance imaging analyses showed early rCBF recovery in thalamus, hippocampus, and cortex post ROSC was positively correlated with neurological outcomes at 24 h. Our findings suggest new translational insights into the regional reperfusion and the time window that may be critical in neurological recovery and warrant further validation.