Neurocritical care
-
Cerebral autoregulation (CA) is a physiological mechanism that maintains constant cerebral blood flow regardless of changes in cerebral perfusion pressure and prevents brain damage caused by hypoperfusion or hyperperfusion. In recent decades, researchers have investigated the range of systemic blood pressures and clinical management strategies over which cerebral vasculature modifies intracranial hemodynamics to maintain cerebral perfusion. ⋯ This article examines the technological advances in monitoring techniques and the accuracy of continuous assessment of autoregulation techniques used in intraoperative and intensive care settings today. It also examines how increasing knowledge of CA from recent clinical trials contributes to a greater understanding of secondary brain injury in many disease processes, despite the fact that the lack of robust evidence influencing outcomes has prevented the translation of CA-guided algorithms into clinical practice.
-
Gastrointestinal (GI) motility disorders may be directly associated with the intensity of acute brain injury, edema of the brainstem, and opioid use in neurosurgical patients. ⋯ Significant correlation was registered between brainstem edema, gastrointestinal dysmotility, and opioids. CNS bleeding was the most important single factor influencing GI dysmotility. Further studies with opioid and nonopioid sedation may distinguish the influence of acute brain lesions versus drugs on GI dysmotility.
-
The outcome of patients with acute ischemic stroke who require mechanical ventilation has been poor. Intubation due to a reversible condition could be associated with better 1-year survival. ⋯ The indication for intubation seems to significantly affect outcome. Functional outcome at 3 months is often poor, but a great majority of 1-year survivors are able to live at home.
-
Cerebral autoregulation is an essential mechanism for maintaining cerebral blood flow stability. The phenomenon of transtentorial intracranial pressure (ICP) gradient after neurosurgical operations, complicated by edema and intracranial hypertension in the posterior fossa, has been described in clinical practice but is still underinvestigated. The aim of the study was to compare autoregulation coefficients (i.e., pressure reactivity index [PRx]) in two compartments (infratentorial and supratentorial) during the ICP gradient phenomenon. ⋯ A high degree of correlation was established between the autoregulation coefficient PRx in two compartments in the presence of transtentorial ICP gradient and persistent intracranial hypertension in the posterior fossa. Cerebral autoregulation, according to the PRx coefficient in both spaces, was similar.
-
The monitoring of intracranial pressure (ICP) and detection of increased ICP are crucial because such increases may cause secondary brain injury and a poor prognosis. Although numerous ultrasound parameters, including optic nerve sheath diameter (ONSD), width of the crural cistern (WCC), and the flow velocities of the central retinal artery and middle cerebral artery, can be measured in patients after hemicraniectomy, researchers have yet to determine which of these is better for evaluating ICP. This study aimed to analyze the correlation between ICP and ultrasound parameters and investigate the best noninvasive estimator of ICP. ⋯ The ONSDI, ONSDI-OND, and WCC were correlated with ICP and had acceptable accuracy levels in estimating ICP in patients after hemicraniectomy. Furthermore, WCC showed a higher diagnostic value than ONSD-related parameters, and the combination of ONSDI-OND and WCC was a satisfactory predictor of increased ICP.