Neurocritical care
-
Organ crosstalk is a complex biological communication between distal organs mediated via cellular, soluble, and neurohormonal actions, based on a two-way pathway. The communication between the central nervous system and peripheral organs involves nerves, endocrine, and immunity systems as well as the emotional and cognitive centers of the brain. ⋯ The present narrative review provides an update on the crosstalk between the nervous system and systemic organs after acute brain injury. Future research might help to target this pathophysiological process, preventing the progression toward multiorgan dysfunction in critically ill patients with brain injury.
-
Noninvasive neuromonitoring in critically ill children includes multiple modalities that all intend to improve our understanding of acute and ongoing brain injury. ⋯ Future prospective multicenter work addressing major knowledge gaps is necessary to advance the field of pediatric noninvasive neuromonitoring.
-
Review
Neuromonitoring after Pediatric Cardiac Arrest: Cerebral Physiology and Injury Stratification.
Significant long-term neurologic disability occurs in survivors of pediatric cardiac arrest, primarily due to hypoxic-ischemic brain injury. Postresuscitation care focuses on preventing secondary injury and the pathophysiologic cascade that leads to neuronal cell death. These injury processes include reperfusion injury, perturbations in cerebral blood flow, disturbed oxygen metabolism, impaired autoregulation, cerebral edema, and hyperthermia. Postresuscitation care also focuses on early injury stratification to allow clinicians to identify patients who could benefit from neuroprotective interventions in clinical trials and enable targeted therapeutics. ⋯ Potential therapeutic targets and future directions are discussed, with the hope that multimodality monitoring can shift postarrest care from a one-size-fits-all model to an individualized model that uses cerebrovascular physiology to reduce secondary brain injury, increase accuracy of neuroprognostication, and improve outcomes.
-
In patients with disorders of consciousness (DoC), laboratory and molecular biomarkers may help define endotypes, identify therapeutic targets, prognosticate outcomes, and guide patient selection in clinical trials. We performed a systematic review to identify common data elements (CDEs) and key design elements (KDEs) for future coma and DoC research. ⋯ Exponential growth in biomarkers development has generated a growing number of potential experimental biomarkers associated with DoC, but few meet the quality, reproducibility, and generalizability criteria to be classified as core and basic biomarker and biospecimen CDEs. Identification and adaptation of KDEs, however, contribute to standardizing methodology to promote harmonization of future biomarker and biospecimens studies in DoC. Development of this CRF serves as a basic building block for future DoC studies.
-
Extracorporeal membrane oxygenation is a potentially lifesaving intervention for children with severe cardiac or respiratory failure. It is used with increasing frequency and in increasingly more complex and severe diseases. ⋯ These include structural imaging with computed tomography and ultrasound, cerebral blood flow monitoring with near-infrared spectroscopy and transcranial Doppler ultrasound, and physiological monitoring with electroencephalography and plasma biomarkers. We highlight areas of need and emerging advances that will improve our understanding of neurological injury related to extracorporeal membrane oxygenation and help to reduce the burden of neurological sequelae in these children.