Journal of pharmacological sciences
-
The acute peripheral neuropathy induced by oxaliplatin treatment occurs very frequently and is aggravated by exposure to cold. Goshajinkigan (GJG), a traditional Japanese (kampo) medicine, was recently shown to be effective against oxaliplatin-induced acute neuropathy. However, because the effects of GJG and its mechanism in relation to those of its ingredients and its mechanism are not well understood, we examined the effects of GJG on acute neuropathy. ⋯ GJG treatment reduced menthol- or AITC-evoked withdrawal responses potentiated by oxaliplatin. Furthermore, GJG suppressed the increase of TRPA1 and TRPM8 mRNA expression induced by oxaliplatin in dorsal root ganglia. These findings suggest that GJG prevented oxaliplatin-induced acute peripheral neuropathy by suppressing functional alteration of TRP channels, especially TRPA1 and TRPM8.
-
The rewarding effects of μ-receptor agonists can be suppressed under several pain conditions. We recently showed that clinically used μ-receptor agonists possess efficacies for relieving the neuropathic pain induced by chemotherapeutic drug in rats; however, it is possible that the use of μ-receptor agonists may trigger the rewarding effects even under chemotherapeutic drug-induced neuropathic pain. Nevertheless, no information is available regarding whether μ-receptor agonists produce psychological dependence under chemotherapeutic drug-induced neuropathic pain. ⋯ Furthermore, the morphine-induced increase in the release of dopamine from the nucleus accumbens, which is a critical step in the rewarding effects of μ-receptor agonists, was not altered in paclitaxel-treated rats. These results suggest that the rewarding effects of μ-receptor agonists can still be established under oxaliplatin- or paclitaxel-induced neuropathic pain. Therefore, patients should be carefully monitored for psychological dependence on μ-receptor agonists when they are used to control chemotherapeutic drug-induced neuropathic pain.
-
Although norepinephrine transporter (NET) inhibition has an additional effect on μ-opioid receptor (MOR)-mediated anti-nociception in inflammatory and neuropathic pain, its effect on cancer pain is not well characterized. We investigated the additional effect of NET inhibition on MOR activation using a mouse femur bone cancer (FBC) pain model by comparing the anti-nociceptive effect of the dual-acting opioids tramadol and tapentadol and the clinically used MOR-targeted opioids oxycodone and morphine. The anti-nociceptive effects of subcutaneously administered opioids were assessed using the von-Frey filament test. ⋯ Rota-rod analyses of tapentadol at a higher dose (> 30 mg/kg) showed a significant decrease in motor coordination, which was partially recovered by pretreatment with MOR or α(1)-adrenoceptor antagonists. The partial anti-nociceptive effect of tapentadol (30 mg/kg) was completely suppressed by a MOR antagonist, but not by α(1)- or α(2)-adrenoceptor antagonists, suggesting that neither α(1)-adrenoceptor- nor α(2)-adrenoceptor-mediated pathways are involved in anti-nociception in the FBC model. We conclude that addition of NET inhibition does not contribute to MOR-mediated anti-nociception in bone cancer pain.
-
We evaluated the effect of buprenorphine, a mixed agonist for μ-opioid receptors and nociceptin/orphanin FQ peptide (NOP) receptors, in neuropathic rats, using the paw pressure test. Buprenorphine, administered i.p. at 50, but not 20, μg/kg, exhibited naloxone-reversible analgesic activity in naïve rats. ⋯ Intrathecal injection of [N-Phe(1)]nociceptin(1-13)NH2, a NOP-receptor antagonist, reversed the effect of buprenorphine in neuropathic rats, but not in naïve rats. Together, buprenorphine suppresses neuropathic hyperalgesia by activating NOP and opioid receptors, suggesting its therapeutic usefulness in treatment of neuropathic pain.
-
Individual differences in the sensitivity to fentanyl, a widely used opioid analgesic, can hamper effective pain treatment. The adrenergic system is reportedly involved in the mechanisms of pain and analgesia. Here, we focused on one of the adrenergic receptor genes, ADRB1, and analyzed the influence of single-nucleotide polymorphisms (SNPs) in the ADRB1 gene on individual differences in pain and analgesic sensitivity. ⋯ The analgesic effect was significantly less in females who carried the G-allele of the G1165C SNP than the females who did not carry the G-allele. The haplotype analysis revealed a significant decrease in 24-h postoperative fentanyl use in female 145A/1165C haplotype carriers. These results suggest that SNPs in the ADRB1 gene are associated with individual differences in pain and analgesic sensitivity, and analyzing these SNPs may promote personalized pain treatment in the future.