Cancer science
-
TP53 mutations are a poor prognostic factor in breast cancers. The present study sets out to identify the gene set that determines the expression signature of the TP53 status (TP53 signature) and to correlate it with clinical outcome. Using comprehensive expression analysis and DNA sequencing of the TP53 gene in 38 Japanese breast cancer patients, a gene set from differentially expressed genes was isolated, depending on the TP53 status. ⋯ The TP53 signature is also a strong prognostic factor in the subgroups: estrogen-receptor positive, lymph node positive and negative, intermediate/high risk in St. Gallen criteria, and high risk in National Cancer Institute (NCI) criteria (log rank, P < 0.0001). TP53 signature is a reliable and independent predictor of the outcome of disease in operated breast cancer.
-
A transgenic mouse model expressing Simian virus 40 T-antigen (SV40Tag) under the control of a tetracycline system was generated. In this model, a cerebellar tumor was developed after doxycycline hydrochloride treatment. Real time-polymerase chain reaction and immunohistochemistry results indicated that the SV40Tag gene was expressed in the tumor. ⋯ We also found that the SV40Tag could bind and translocate insulin receptor substrate 1 into the nucleus in primary cultured tumor cells. The interaction between the IGF pathway and SV40Tag may contribute to the process of malignant transformation in medulloblastoma. This transgenic animal model provides an important tool for studies on the signal pathways involved in the preneoplastic process in medulloblastoma and could help to identify therapeutic targets for brain tumors.
-
Recent discovery of mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene in lung adenocarcinoma greatly stimulated biomarker research on predictive factors for EGFR tyrosine kinase inhibitors (TKI), such as gefitinib and erlotinib. Although patients with activating mutations of the EGFR generally respond to EGFR TKIs very well, it is natural to assume that there is no sole determinant, considering great complexity and redundancy of the EGFR pathway. ⋯ We also discuss molecular mechanisms of acquired resistance to EGFR-TKIs that is almost inevitable in EGFR-TKI therapy. The door for genotype-based treatment of lung cancer is beginning to open, and through these efforts, it will be possible to slow the progression of lung cancer and eventually, to decrease mortality from lung cancer.
-
Angiogenesis and its role in the growth and development of metastases has become a topic of increasing importance. In non-small cell lung cancer (NSCLC), vascular endothelial growth factor (VEGF) plays an important role in angiogenesis, growth of the primary tumor, and development of metastases. In addition, elevated expression in tissue samples is a negative prognostic feature. ⋯ The results of ongoing trials using these agents in combination with standard therapy will provide more insight into their potential benefit. As it is known that small tumors require angiogenesis to grow and metastasize, the use of anti-angiogenic therapies in the adjuvant setting may provide even greater benefit, and increase the potential cure rate in this population of patients. The results of well-designed phase III trials will be required to truly understand how to best use this class of targeted therapies in resectable and metastatic NSCLC.
-
NY-ESO-1 is a cancer-testis antigen that elicits strong cellular and humoral immune responses against NY-ESO-1-expressing tumors. Although CD4(+) T cells play a critical role in inducing antitumor immunity, little is known about MHC class II-restricted helper epitopes of the NY-ESO-1 antigen compared with MHC class I-restricted epitopes. Here, we searched for new NY-ESO-1 helper epitopes presented by MHC class II molecules, especially those found frequently in the Japanese population. ⋯ Using MHC class II-specific antibodies and a panel of Epstein-Barr virus-transformed B-cell lines, it was demonstrated that four out of the five T-cell lines recognized a region within NY-ESO-1(119-143) in the context of HLA-DRB1*0802, DRB1*0901, DRB1*1502 or DRB1*0405/*0410. In addition, using a set of overlapping 15-mer synthetic peptides, we found that NY-ESO-1(122-138) was a promiscuous region that bound to four distinct HLA-DR molecules found in the Japanese population. These findings expand the usefulness of NY-ESO-1 as a tool for tumor vaccine therapy in eliciting NY-ESO-1-specific helper T-cell responses, especially in Japanese cancer patients.