mSphere
-
Diarrhea remains one of the most common causes of deaths in children. A limited number of studies have investigated the prevalence of enteric pathogens in Cameroon, and as in many other African countries, the cause of many diarrheal episodes remains unexplained. A proportion of these unknown cases of diarrhea are likely caused by yet-unidentified viral agents, some of which could be the result of (recent) interspecies transmission from animal reservoirs, like bats. ⋯ Therefore, the data represent a baseline for future studies on enteric viral pathogens in this area and contribute to our knowledge of the world's virome. The studies also highlight the fact that more viruses may be associated with diarrhea than the typical known ones. Hence, it provides meaningful epidemiological information on diarrhea-related viruses in this area.
-
Strategies to prevent multidrug-resistant organism (MDRO) infections are scarce, but autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking one's feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity after exposure to amoxicillin-clavulanic acid (Amox-Clav). ⋯ AutoFMT involves banking one's feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of amoxicillin-clavulanic acid (Amox-Clav) exposure and autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity. Importantly, we found that metabolic capacity was perturbed even in cases where gross phylogeny remained unchanged and that autoFMT was safe and well tolerated.
-
Neisseria meningitidis is a common cause of bacterial meningitis in children and young adults worldwide. The 4CMenB vaccine (Bexsero), developed to combat meningococcal serogroup B (MenB) disease, contains subcapsular antigens that may induce immunity against strains of N. meningitidis, regardless of serogroup. Owing to differential levels of expression and peptide diversity in vaccine antigens across meningococcal strains, the meningococcal antigen typing system (MATS) was developed to estimate the potential MenB strain coverage of 4CMenB. ⋯ Assays based on subcapsular antigen phenotype analyses, such as MATS, are important in situations where conventional vaccine coverage estimations are not possible. Subcapsular antigens are typically highly diverse across strains, and vaccine coverage estimations would require unfeasibly large efficacy trials and screening of an exhaustive strain panel for antibody functional activity. Here, MATS was applied to all invasive meningococcal serogroup B (MenB) strains isolated over four consecutive epidemiological years (n = 105) and predicted reasonably high 4CMenB vaccine coverage in the Republic of Ireland.
-
Staphylococcus aureus is a major cause of chronic respiratory infection in patients with cystic fibrosis (CF). We recently showed that Pseudomonas aeruginosa exhibits enhanced biofilm formation during respiratory syncytial virus (RSV) coinfection on human CF airway epithelial cells (AECs). The impact of respiratory viruses on other bacterial pathogens during polymicrobial infections in CF remains largely unknown. ⋯ We investigated the relationship between S. aureus and the CF airway epithelium and observed that coinfection with respiratory syncytial virus (RSV) enhances S. aureus biofilm growth. However, iron, which was previously found to be a significant factor influencing Pseudomonas aeruginosa biofilms during virus coinfection, plays a minor role in S. aureus coinfections. Transcriptomic analyses provided new insight into how bacterial and viral pathogens alter host defense and suggest potential pathways by which dampening of host responses to one pathogen may favor persistence of another in the CF airways, highlighting complex interactions occurring between bacteria, viruses, and the host during polymicrobial infections.
-
The recent emergence of novel tick-borne RNA viruses has complicated the epidemiological landscape of tick-borne infectious diseases, posing a significant challenge to public health systems that seek to counteract tick-borne diseases. The identification of two novel tick-borne phleboviruses (TBPVs), severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus (HRTV), as causative agents of severe illness in humans has accelerated the investigation and discoveries of novel TBPVs. In the present study, we isolated a novel TBPV designated Mukawa virus (MKWV) from host-questing Ixodes persulcatus females captured in Japan. ⋯ While its viral RNA genome sequences were similar to those of mosquito/sandfly-borne viruses, molecular and biological footprints confirmed that this is a tick-borne virus. The unique evolutionary position of the virus allowed us to estimate the ancestral phlebovirus vector, which was likely a hard tick. Our findings may provide a better understanding of the evolution and emergence of phleboviruses associated with emerging infectious diseases, such as severe fever with thrombocytopenia syndrome (SFTS) and Heartland virus disease.