Circulation
-
Intracranial aneurysm (IA) is a common vascular disorder that frequently leads to fatal vascular rupture. Although various acquired risk factors associated with IA have been identified, the hereditary basis of IA remains poorly understood. As a result, genetically modified animals accurately modeling IA and related pathogenesis have been lacking, and subsequent drug development has been delayed. ⋯ Our findings demonstrate that Sox17 deficiency in mouse can induce IA under hypertensive conditions, suggesting Sox17 deficiency as a potential genetic factor for IA formation. The Sox17-deficient mouse model provides a novel platform to develop therapeutics for incurable IA.
-
Randomized Controlled Trial Clinical Trial
Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial.
Patients with severe limb ischemia may not be eligible for conventional therapeutic interventions. Pioneering clinical trials suggest that bone marrow-derived cell therapy enhances neovascularization, improves tissue perfusion, and prevents amputation. The objective of this trial was to determine whether repetitive intra-arterial infusion of bone marrow mononuclear cells (BMMNCs) in patients with severe, nonrevascularizable limb ischemia can prevent major amputation. ⋯ http://www.clinicaltrials.gov. Unique identifier: NCT00371371.
-
The goals of this study were to compare ECG at moderate exercise in normoxia and hypoxia at the same heart rate, to provide evidence of independent predictors of hypoxia-induced ECG changes, and to evaluate ECG risk factors of severe high-altitude illness. ⋯ During a hypoxia exercise test, a dose-dependent hypoxia-induced decrease in the amplitude of the P/QRS/T waves was observed. No standard ECG characteristic predicted the risk of developing severe high-altitude illness. Further studies are required to clarify the cause of these electric changes and their potential predictive role in cardiac events.