The Lancet. Digital health
-
Lancet Digit Health · Apr 2021
Dynamic prediction of psychological treatment outcomes: development and validation of a prediction model using routinely collected symptom data.
Common mental disorders can be effectively treated with psychotherapy, but some patients do not respond well and require timely identification to prevent treatment failure. We aimed to develop and validate a dynamic model to predict psychological treatment outcomes, and to compare the model with currently used methods, including expected treatment response models and machine learning models. ⋯ University of Sheffield.
-
Lancet Digit Health · Mar 2021
ReviewWhat social media told us in the time of COVID-19: a scoping review.
With the onset of the COVID-19 pandemic, social media has rapidly become a crucial communication tool for information generation, dissemination, and consumption. In this scoping review, we selected and examined peer-reviewed empirical studies relating to COVID-19 and social media during the first outbreak from November, 2019, to November, 2020. ⋯ Furthermore, our Review emphasises the paucity of studies on the application of machine learning on data from COVID-19-related social media and a scarcity of studies documenting real-time surveillance that was developed with data from social media on COVID-19. For COVID-19, social media can have a crucial role in disseminating health information and tackling infodemics and misinformation.
-
Lancet Digit Health · Mar 2021
Mask-wearing and control of SARS-CoV-2 transmission in the USA: a cross-sectional study.
Face masks have become commonplace across the USA because of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic. Although evidence suggests that masks help to curb the spread of the disease, there is little empirical research at the population level. We investigate the association between self-reported mask-wearing, physical distancing, and SARS-CoV-2 transmission in the USA, along with the effect of statewide mandates on mask uptake. ⋯ Flu Lab, Google.org (via the Tides Foundation), National Institutes for Health, National Science Foundation, Morris-Singer Foundation, MOOD, Branco Weiss Fellowship, Ending Pandemics, Centers for Disease Control and Prevention (USA).
-
Lancet Digit Health · Feb 2021
Rapid triage for COVID-19 using routine clinical data for patients attending hospital: development and prospective validation of an artificial intelligence screening test.
The early clinical course of COVID-19 can be difficult to distinguish from other illnesses driving presentation to hospital. However, viral-specific PCR testing has limited sensitivity and results can take up to 72 h for operational reasons. We aimed to develop and validate two early-detection models for COVID-19, screening for the disease among patients attending the emergency department and the subset being admitted to hospital, using routinely collected health-care data (laboratory tests, blood gas measurements, and vital signs). These data are typically available within the first hour of presentation to hospitals in high-income and middle-income countries, within the existing laboratory infrastructure. ⋯ Wellcome Trust, University of Oxford, Engineering and Physical Sciences Research Council, National Institute for Health Research Oxford Biomedical Research Centre.