The American journal of Chinese medicine
-
Recently, gut flora has been linked to the onset of obesity and has been shown to influence the host's metabolism. Acupuncture is a well-known agent used for the treatment of numerous diseases such as obesity. This study aimed to explore the impacts of electroacupuncture treatment on gut microbiota composition and function in obese mice. ⋯ The structures and functions of the intestinal flora were significantly different between healthy and obese mice, and animals in the acupuncture group gradually tended towards healthy controls. Moreover, electroacupuncture altered the bacterial diversity and metabolic genes to establish new balance, observed the obvious change from 7[Formula: see text]d and stabilized gradually through 21[Formula: see text]d. These findings suggested gut flora could be a novel target of electroacupuncture treatment against obesity.
-
Allyl isothiocyanate (AITC), one of the most widely studied phytochemicals, inhibits the survival of human prostate cancer cells while minimally affecting normal prostate epithelial cells. Our study demonstrates the mechanism of AITC-induced cell death in prostate cancer cells. AITC induces autophagy in RV1 and PC3 cells, judging from the increased level of LC3-II protein in a dose- and time-dependent manner, but not in the normal prostate epithelial cell (PrEC). ⋯ Finally, increased beclin-1 expression was detected in AITC-treated cells, and inhibition of AITC-induced beclin-1 attanuated autophagy induction, indicating that AITC-induced autophagy occurs through upregulating beclin-1. Overall, our data show for the first time that AITC induces protective autophagy in Rv1 and PC3 cells through upregulation of beclin-1. Our results could potentially contribute to a therapeutic application of AITC in prostate cancer patients.
-
Amyloid [Formula: see text] (A[Formula: see text]) plays a major role in the pathogenesis of Alzheimer's disease (AD). The accumulation of misfolded A[Formula: see text] causes oxidative and inflammatory damage leading to apoptotic cell death. Chinese herbal medicine (CHM) has been widely used in clinical practice to treat neurodegenerative diseases associated with oxidative stress and neuroinflammation. ⋯ Our results showed that G. inflata extract and its two constituents displayed potentials of A[Formula: see text] aggregation inhibition and radical-scavenging in biochemical assays, A[Formula: see text] misfolding inhibition and reactive oxygen species (ROS) reduction in A[Formula: see text]-GFP 293 cells, as well as neurite outgrowth promotion, acetylcholinesterase inhibition and SOD2 up-regulation in A[Formula: see text]-GFP SH-SY5Y cells. Meanwhile, both G. inflata extract and its constituents suppressed NO, TNF-[Formula: see text], IL-1[Formula: see text], PGE2 and/or Iba1 productions in inflammation-stimulated RAW 264.7 or BV-2 cells. G. inflata extract and its constituents further protected A[Formula: see text]-GFP SH-SY5Y cells from BV-2 CM-induced cell death by ameliorating reduced BCL2 and attenuating increased IGFBP2, cleaved CASP3, BAD and BAX. Collectively, G. inflata extract, licochalcone A and liquiritigenin display neuroprotection through exerting anti-oxidative and anti-inflammatory activities to suppress neuronal apoptosis.
-
Intervertebral disc degeneration (IDD) is a major cause of lower back pain, but few efficacious medicines have been developed for IDD. Increased nucleus pulposus cells apoptosis is a dominant pathogenesis of IDD and is considered a therapeutic target. Previously, our group proved that autophagy may protect nucleus pulposus cells against apoptosis. ⋯ Also, we found that naringin treatment can regulate the expression of collagen II, aggrecan and Mmp13 to sustain the extracellular matrix. Furthermore, our in vivo study showed that naringin can ameliorate IDD in puncture-induced rat model. In conclusion, our study suggests that naringin can protect nucleus pulposus cells against apoptosis and ameliorate IDD in vivo, the mechanism may relate to its autophagy regulation.
-
The cytokine C-X-C motif chemokine ligand 8 (CXCL8) is produced in the tumor microenvironment and has an important role in cancer pathogenesis. CXCL8 activates the nuclear factor (NF)-[Formula: see text]B signaling. However, the role of NF-[Formula: see text]B inactivation in apoptosis induced by negative regulation of CXCL8 remains unclear. ⋯ When Akt was silenced, MRGX treatment of HepG2 cells overexpressing CXCL8 decreased nuclear translocation of NF-[Formula: see text]B, whereas Akt overexpression increased nuclear translocation of NF-[Formula: see text]B in MRGX-treated HepG2 cells. Moreover, MRGX negatively regulated the TNF-[Formula: see text]-mediated I[Formula: see text]B/NF-[Formula: see text]B pathway to promote Bax activation, resulting in caspase-3 activation and apoptosis. Taken together, these results indicated that MRGX inhibited CXCL8-mediated Akt/NF-[Formula: see text]B signaling, which upregulated Bax activation and consequently induced apoptosis in HepG2 cells.