The American journal of Chinese medicine
-
Based on the study and research on the pathogenesis of colorectal cancer, the types and functions of gut microbiota, and its role in guiding and regulating the occurrence and development of diseases, we have explored the mechanism of traditional Chinese medicine in the treatment of colorectal cancer by regulating the gut microbiota. Genetic variation, abnormal responses of innate and adaptive immunity, mucosal barrier dysfunction, imbalance of intestinal microbial colonization, personal and environmental risk factors are the main pathogenesis of colorectal cancer. ⋯ Current studies have shown that Chinese herbal compound, single medicinal materials, and monomer components can treat colorectal cancer by regulating the gut microbiota, such as Xiaoyaosan can increase the abundance of Bacteroides, Lactobacillus, and Proteus and decrease the abundance of Desulfovibrio and Rickerella. Therefore, studying the regulation and mechanism of gut microbiota on colorectal cancer is of great benefit to disease treatment.
-
The molecular mechanism underlying the anticancer effects of Anemarrhena asphodeloides (A. asphodeloides) on colon cancer is unknown. This is the first study evaluating the anticancer effect of A. asphodeloides extract (AA-Ex) in serum-starved colorectal cancer cells. Changes in cell proliferation and morphology in serum-starved MC38 and HCT116 colorectal cancer cells were investigated using MTS assay. ⋯ Furthermore, AA-Ex treatment with serum starvation increased the levels of the transcription factors of the p38 and JNK pathway. Serum starvation sensitizes colorectal cancer cells to the anticancer effect of A. asphodeloidesvia p38/JNK-induced cell cycle arrest and apoptosis. Hence, AA-Ex possesses therapeutic potential for colon cancer treatment.
-
Glioblastoma multiforme (GBM) is a deadly malignant brain tumor that is resistant to most clinical treatments. Novel therapeutic agents that are effective against GBM are required. Antrodia cinnamomea has shown antiproliferative effects in GBM cells. ⋯ The epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Hippo/yes-associated protein (YAP), and cAMP-response element binding protein (CREB) pathways were suppressed by 4AALT3. Moreover, 4AALT3 decreased the level of DNA repair enzyme O6-methylguanine-DNA methyltransferase and showed a synergistic effect with temozolomide. Our findings provide the basis for exploring the beneficial effect of 4AALT3 on GBM in vivo.
-
In Lung adenocarcinoma (ADC), Qi-Yin deficiency syndrome (QY) is the most common Traditional Chinese medicine (TCM) syndrome. This study aimed to investigate the diversity and composition of gut microbiota in ADC patients with QY syndrome. 90 stool samples, including 30 healthy individuals (H), 30 ADC patients with QY syndrome, and 30 ADC patients with another syndrome (O) were collected. Then, 16s-RNA sequencing was used to analyze stool samples to clarify the structure of gut microbiota, and linear discriminant analysis (LDA) effect size (LEfSe) was applied to identify biomarkers for ADC with QY syndrome. ⋯ LEfSe identified Prevotella_9 and Streptococcus might be the biomarkers for QY syndrome. A diagnostic model was constructed using those 2 genera with the AUC = 0.801, similar to the AUC based on Metagenomics (0.842). The structure of gut microbiota in ADC patients with QY syndrome was investigated, and a diagnostic model was developed for the diagnosis of QY syndrome in ADC patients, which provides a novel idea for the understanding and diagnosis of TCM syndrome.
-
Comparative Study
Effects of Berberine on Diabetes and Cognitive Impairment in an Animal Model: The Mechanisms of Action.
Diabetes is a group of metabolic disorders with an increased risk of developing cognitive impairment and dementia. The hippocampus in the forebrain contains an abundance of insulin receptors related to cognitive function and plays an important role in the pathophysiology of neurodegenerative disorders. Berberine from traditional Chinese medicine has been used to treat diabetes and diabetic cognitive impairment, although its related mechanisms are largely unknown. ⋯ The TUNEL assay confirmed that berberine reduced hippocampal neuronal apoptosis supported by TEM. Thus, berberine significantly improved the cognitive function in diabetic rats by changing the peripheral and central insulin resistance. The reduction of neuronal injury, A[Formula: see text] deposition, abnormal phosphorylation of Tau protein, and neuronal apoptosis in the hippocampus were observed as the related mechanisms of action.