The American journal of Chinese medicine
-
Radiotherapy plays a crucial role in the multimodal treatment of breast cancer. However, radioresistance poses a significant challenge to its effectiveness, hindering successful cancer therapy. Emerging evidence indicates that Nrf2 and HIF-1[Formula: see text] are critical regulators of cellular anti-oxidant responses and that their overexpression significantly promotes radioresistance. ⋯ Consequently, the Nrf2/HIF-1[Formula: see text] pathway, along with the Nrf2- and HIF-1[Formula: see text]-dependent protective responses, were suppressed. Taken together, our findings demonstrate that WG can epigenetically regulate the Keap1 gene, inhibit the Nrf2/HIF-1[Formula: see text] pathway, induce apoptosis in breast cancer cells, and diminish acquired radioresistance. This study offers potential strategies to overcome the limitations of current radiotherapy for breast cancer.
-
Prostate cancer (PC) is the second leading cause of cancer-related death among men. Treatment of PC becomes difficult after progression because PC that used to be androgen-dependent becomes androgen-independent prostate cancer (AIPC). Veratramine, an alkaloid extracted from the root of the Veratrum genus, has recently been reported to have anticancer effects that work against various cancers; however, its anticancer effects and the underlying mechanism of action in PC remain unknown. ⋯ In this study, we discovered that veratramine exerted antitumor effects on AIPC cells. We demonstrated that veratramine significantly inhibited the proliferation of cancer cells via G0/G1 phase arrest induced by the ATM/ATR and Akt pathways. These results suggest that veratramine is a promising natural therapeutic agent for AIPC.
-
Andrographolide (AND) is a bioactive component of the herb Andrographis paniculata and a well-known anti-inflammatory agent. Atherosclerosis is a chronic inflammatory disease of the vasculature, and oxidized LDL (oxLDL) is thought to contribute heavily to atherosclerosis-associated inflammation. The aim of this study was to investigate whether AND mitigates oxLDL-mediated foam cell formation and diet-induced atherosclerosis (in mice fed a high-fat, high-cholesterol, high-cholic acid [HFCCD] diet) and the underlying mechanisms involved. ⋯ HFCCD feeding significantly increased aortic lipid accumulation, ICAM-1 expression, and IL-1[Formula: see text] mRNA expression, as well as blood levels of glutamic pyruvic transaminase (GPT), total cholesterol, and LDL-C. AND co-administration mitigated aortic lipid accumulation, the protein expression of ICAM-1, mRNA expression of IL-1[Formula: see text] and ICAM-1, and blood levels of GPT. These results suggest that the working mechanisms by which AND mitigates atherosclerosis involve the inhibition of foam cell formation and NLRP3 inflammasome-dependent vascular inflammation as evidenced by decreased SR-A expression and IL-1[Formula: see text] release, respectively.
-
Rhizoma coptidis (CR) is traditionally used for treating gastrointestinal diseases. Wine-processed CR (wCR), zingiber-processed CR (zCR), and evodia-processed CR (eCR) are its major processed products. However, the related study of their specific mechanisms is very limited, and they need to be further clarified. ⋯ Together with the correlation analysis between metabolites and gut microbiota, the potential intervening mechanism of wCR/zCR/eCR was explored. The results suggested that wCR played a good role in maintaining immune homeostasis, promoting glycolysis, and reducing cholesterol; zCR had a better effect on protecting the integrity of the intestinal mucus barrier, preventing gastric ulcers, and reducing body cholesterol; eCR was good at protecting the integrity of the intestinal mucus barrier and promoting glycolysis. This study scientifically elucidated the intervening mechanism of wCR/zCR/eCR from the perspective of faecal metabolites and gut microbiota, providing a new insight into the processing mechanism research of Chinese herbs.
-
Inflammatory bowel disease (IBD) is a recurrent disease associated with a potential risk of colorectal cancer. Abelmoschus manihot (AM), a Chinese herbal medicine, is known to alleviate IBD. However, its mechanism of action requires further clarification. ⋯ A gut microbial sequencing analysis showed that gut microbial dysbiosis was modulated by AM intervention. The regulatory effects of AM on Eggerthellaceae, Sutterellaceae, Erysipelotrichaceae, Burkholderiaceae, Desulfovibrionaceae, and Enterococcaceae were dependent on IL-10. These results revealed that AM ameliorated IBD and modulated gut microbes by promoting IL-10 secretion, indicating that AM has the potential to improve IBD and that AM is IL-10-dependent.