The American journal of Chinese medicine
-
Chicoric acid (CA), a functional food ingredient, is a caffeic acid derivative that is mainly found in lettuce, pulsatilla, and other natural plants. However, the anti-inflammatory effects of CA in acute lung injury (ALI) remain poorly understood. This study was conducted to investigate potential drug usage of CA for ALI and the underlying molecular mechanisms of inflammation. ⋯ Furthermore, CA directly targeted the PDPK1 protein and accelerated PDPK1 ubiquitination, indicating that 91-GLY, 111-LYS, 126-TYR, 162-ALA, 205-ASP, and 223-ASP might be responsible for the interaction between PDPK1 and CA. In conclusion, CA from Lettuce alleviated NLRP3-mediated pyroptosis in the ALI model through ROS-induced mitochondrial damage by activating Akt/Nrf2 pathway via PDPK1 ubiquitination. The present study suggests that CA might be a potential therapeutic drug to treat or prevent ALI in pneumonia or COVID-19.
-
Rhizoma coptidis (CR) is traditionally used for treating gastrointestinal diseases. Wine-processed CR (wCR), zingiber-processed CR (zCR), and evodia-processed CR (eCR) are its major processed products. However, the related study of their specific mechanisms is very limited, and they need to be further clarified. ⋯ Together with the correlation analysis between metabolites and gut microbiota, the potential intervening mechanism of wCR/zCR/eCR was explored. The results suggested that wCR played a good role in maintaining immune homeostasis, promoting glycolysis, and reducing cholesterol; zCR had a better effect on protecting the integrity of the intestinal mucus barrier, preventing gastric ulcers, and reducing body cholesterol; eCR was good at protecting the integrity of the intestinal mucus barrier and promoting glycolysis. This study scientifically elucidated the intervening mechanism of wCR/zCR/eCR from the perspective of faecal metabolites and gut microbiota, providing a new insight into the processing mechanism research of Chinese herbs.
-
For centuries, Sophora alopecuroides L. has been used both as a food and an herbal medicine in northern China. A new cytisine-type alkaloid, N-methylene-(5,7,4[Formula: see text]-trihydroxy)-isoflavone (LY01), was found in the fruits of Sophora alopecuroides L. and shows neuroprotective effects against Parkinson's disease (PD). PD is a frequently occurring, irreversible neurodegenerative disease that seriously threatens the health of the elderly population. ⋯ In the rotarod test, LY01 alleviated the impaired motor coordination in PD mice. Furthermore, LY01 treatment prevented the loss of dopaminergic neurons in the substantia nigra and striatum of the PD mice, reduced neuroinflammation in the mice with MPTP-induced PD and the LPS-activated BV-2 cells, and diminished oxidative stress in the PD mice and the MPP[Formula: see text]-induced SH-SY5Y cells. In conclusion, these results suggest the potential of LY01 as a therapeutic agent for treating PD.
-
Coptis chinensis Franch (RC), has historically been used for the treatment of "Xiao Ke" and "Xia Li" symptoms in China. "Xia Li" is characterized by abdominal pain and diarrhea, which are similar to the clinical symptoms of ulcerative colitis (UC). For the first time, this study aims to compare the anti-colitis effects of berberine (BBR) and total RC alkaloids (TRCA) and investigate the underlying metabolites and gut microbiota biomarkers. Metabolomics results showed that several colitis-related biomarkers, including lysophosphatidyl ethanolamine, lysophosphatidylcholine, scopolamine-methyl-bromide, N1-methyl-2-pyridone-5-carboxamide, 4-hydroxyretinoic acid, and malic acid, were significantly improved in model mice after BBR and TRCA treatments. ⋯ Additionally, BBR and TRCA significantly decreased the richness of the pathogenic bacteria Bacteroides acidifaciens but increased the abundance of the probiotic Lactobacillus spp. Notably, TRCA exhibited superior anti-colitis effects to those of BBR. Thus, this agent warrants further study and application in the treatment of inflammatory bowel disease in the clinic.
-
Radiotherapy plays a crucial role in the multimodal treatment of breast cancer. However, radioresistance poses a significant challenge to its effectiveness, hindering successful cancer therapy. Emerging evidence indicates that Nrf2 and HIF-1[Formula: see text] are critical regulators of cellular anti-oxidant responses and that their overexpression significantly promotes radioresistance. ⋯ Consequently, the Nrf2/HIF-1[Formula: see text] pathway, along with the Nrf2- and HIF-1[Formula: see text]-dependent protective responses, were suppressed. Taken together, our findings demonstrate that WG can epigenetically regulate the Keap1 gene, inhibit the Nrf2/HIF-1[Formula: see text] pathway, induce apoptosis in breast cancer cells, and diminish acquired radioresistance. This study offers potential strategies to overcome the limitations of current radiotherapy for breast cancer.