The American journal of Chinese medicine
-
Hepatic fibrosis (HF) is a wound healing response featuring excessive deposition of the extracellular matrix (ECM) and activation of hepatic stellate cells (HSCs) that occurs during chronic liver injury. As an initial stage of various liver diseases, HF is a reversible pathological process that, if left unchecked, can escalate into cirrhosis, liver failure, and liver cancer. HF is a life-threatening disease presenting morbidity and mortality challenges to healthcare systems worldwide. ⋯ Catabolism of LDs is characteristic of the activation of HSCs and morphological transdifferentiation of cells into contractile and proliferative myofibroblasts, resulting in the deposition of ECM and the development of HF. Recent studies have revealed that various Chinese medicines (e.g., Artemisia annua, turmeric, Scutellaria baicalensis Georgi, etc.) are able to effectively reduce the degradation of LDs in HSCs. Therefore, this study takes the modification of LDs in HSCs as an entry point to elaborate on the process of Chinese medicine intervening in the loss of LDs in HSCs and the mechanism of action for the treatment of HF.
-
The brain metabolic changes caused by the interruption of blood supply are the initial factors of brain injury in ischemic stroke. Electroacupuncture (EA) pretreatment has been shown to protect against ischemic stroke, but whether its neuroprotective mechanism involves metabolic regulation remains unclear. Based on our finding that EA pretreatment significantly alleviated ischemic brain injury in mice by reducing neuronal injury and death, we performed a gas chromatography-time of flight mass spectrometry (GC-TOF/MS) to investigate the metabolic changes in the ischemic brain and whether EA pretreatment influenced these changes. ⋯ A further pathway analysis showed that these 11 and 18 markedly changed metabolites were mainly involved in starch and sucrose metabolism, purine metabolism, aspartate metabolism, and the citric acid cycle. Additionally, we found that EA pretreatment raised the levels of neuroprotective metabolites in both normal and ischemic brain tissues. In conclusion, our study revealed that EA pretreatment may attenuate the ischemic brain injury by inhibiting glycolysis and increasing the levels of some neuroprotective metabolites.
-
Chicoric acid (CA), a functional food ingredient, is a caffeic acid derivative that is mainly found in lettuce, pulsatilla, and other natural plants. However, the anti-inflammatory effects of CA in acute lung injury (ALI) remain poorly understood. This study was conducted to investigate potential drug usage of CA for ALI and the underlying molecular mechanisms of inflammation. ⋯ Furthermore, CA directly targeted the PDPK1 protein and accelerated PDPK1 ubiquitination, indicating that 91-GLY, 111-LYS, 126-TYR, 162-ALA, 205-ASP, and 223-ASP might be responsible for the interaction between PDPK1 and CA. In conclusion, CA from Lettuce alleviated NLRP3-mediated pyroptosis in the ALI model through ROS-induced mitochondrial damage by activating Akt/Nrf2 pathway via PDPK1 ubiquitination. The present study suggests that CA might be a potential therapeutic drug to treat or prevent ALI in pneumonia or COVID-19.
-
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by CD4[Formula: see text] T cell-mediated immune cell infiltration and demyelination in the central nervous system (CNS). The subtypes of CD4[Formula: see text] T cells are T helper cells 1 (Th1), Th2, Th17, and regulatory T cells (Treg), while three other types of cells besides Th2 play a key role in MS and its classic animal model, experimental autoimmune encephalomyelitis (EAE). Tregs are responsible for immunosuppression, while pathogenic Th1 and Th17 cells cause autoimmune-associated demyelination. ⋯ The active ingredients in AR include astragalus flavones, polysaccharides, and saponins. In this study, it was found that the total flavonoids of Astragus (TFA) could effectively treat EAE in mice by ameliorating EAE motor disorders, reducing inflammatory damage and demyelination, inhibiting the proportion of Th17 and Th1 cells, and promoting Tregs differentiation by regulating the JAK/STAT and NF[Formula: see text]B signaling pathways. This novel finding may increase the possibility of using AR or TFA as a drug with immunomodulatory effects for the treatment of autoimmune diseases.
-
Hemorrhagic shock (HS) is defined as a reduction in tissue oxygenation and organ dysfunction due to severe blood loss. Lung injury is a frequent complication of HS. Baicalin, isolated from Radix Scutellariae, has been reported to profile the antitumor, anti-oxidative, anti-inflammatory, and antibacterial roles in various pathological processes. ⋯ The secretion of inflammatory cytokines, including interleukin (IL)-1[Formula: see text], IL-6, IL-18, and tumor necrosis factor [Formula: see text] (TNF-[Formula: see text]), as well as the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing-3 (NLRP3) inflammasome, were inhibited by baicalin administration. Furthermore, we found that the NF-[Formula: see text]B pathway, a canonical pro-inflammatory pathway, was also blocked after treatment with baicalin in HS-evoked rats, as indicated by the decreased expression of p65 and p65 phosphorylation in the lung tissues. In summary, we infer that baicalin may exert a protective role in HS-induced lung injury by suppressing the activation of NLRP3 inflammasome via the NF-[Formula: see text]B pathway.