The American journal of Chinese medicine
-
Hemorrhagic shock (HS) is the leading cause of death in trauma patients. Inflammation following HS can lead to cardiac damage. Pachymic acid (PA), a triterpenoid extracted from Poria cocos, has been found to possess various biological activities, including anti-inflammatory and anti-apoptotic properties. ⋯ Notably, PA-pretreatment suppressed NF-[Formula: see text]B pathway activation via inhibiting NF-[Formula: see text]B p65 phosphorylation and its nuclear translocation. In conclusion, PA-pretreatment ameliorates HS-induced cardiac injury, potentially through its inhibition of the NF-[Formula: see text]B pathway. Therefore, PA treatment holds promise as a strategy for mitigating cardiac damage in HS.
-
Diabetic nephropathy (DN) is one of the most serious complications of diabetes and the most common cause of death. The autophagy of podocytes plays an important role in the pathogenesis of DN. Here, through screening the constituent compounds of practical and useful Chinese herbal formulas, we identified that isoorientin (ISO) strongly promoted the autophagy of podocytes and could effectively protect podocytes from high glucose (HG)-induced injury. ⋯ Furthermore, ISO was predicted to bind to the SH2 domain of PI3Kp85[Formula: see text], which is crucial for the recruitment and activation of PI3K. The protective effect of ISO and its effects on autophagy and particularly on mitophagy were further proved using a DN mice model. To summarize, our study identified the protective effects of ISO against DN and demonstrated that ISO was a strong activator of autophagy, which could provide a basis for drug development.
-
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by CD4[Formula: see text] T cell-mediated immune cell infiltration and demyelination in the central nervous system (CNS). The subtypes of CD4[Formula: see text] T cells are T helper cells 1 (Th1), Th2, Th17, and regulatory T cells (Treg), while three other types of cells besides Th2 play a key role in MS and its classic animal model, experimental autoimmune encephalomyelitis (EAE). Tregs are responsible for immunosuppression, while pathogenic Th1 and Th17 cells cause autoimmune-associated demyelination. ⋯ The active ingredients in AR include astragalus flavones, polysaccharides, and saponins. In this study, it was found that the total flavonoids of Astragus (TFA) could effectively treat EAE in mice by ameliorating EAE motor disorders, reducing inflammatory damage and demyelination, inhibiting the proportion of Th17 and Th1 cells, and promoting Tregs differentiation by regulating the JAK/STAT and NF[Formula: see text]B signaling pathways. This novel finding may increase the possibility of using AR or TFA as a drug with immunomodulatory effects for the treatment of autoimmune diseases.
-
Prostate cancer (PC) is the second leading cause of cancer-related death among men. Treatment of PC becomes difficult after progression because PC that used to be androgen-dependent becomes androgen-independent prostate cancer (AIPC). Veratramine, an alkaloid extracted from the root of the Veratrum genus, has recently been reported to have anticancer effects that work against various cancers; however, its anticancer effects and the underlying mechanism of action in PC remain unknown. ⋯ In this study, we discovered that veratramine exerted antitumor effects on AIPC cells. We demonstrated that veratramine significantly inhibited the proliferation of cancer cells via G0/G1 phase arrest induced by the ATM/ATR and Akt pathways. These results suggest that veratramine is a promising natural therapeutic agent for AIPC.
-
The brain metabolic changes caused by the interruption of blood supply are the initial factors of brain injury in ischemic stroke. Electroacupuncture (EA) pretreatment has been shown to protect against ischemic stroke, but whether its neuroprotective mechanism involves metabolic regulation remains unclear. Based on our finding that EA pretreatment significantly alleviated ischemic brain injury in mice by reducing neuronal injury and death, we performed a gas chromatography-time of flight mass spectrometry (GC-TOF/MS) to investigate the metabolic changes in the ischemic brain and whether EA pretreatment influenced these changes. ⋯ A further pathway analysis showed that these 11 and 18 markedly changed metabolites were mainly involved in starch and sucrose metabolism, purine metabolism, aspartate metabolism, and the citric acid cycle. Additionally, we found that EA pretreatment raised the levels of neuroprotective metabolites in both normal and ischemic brain tissues. In conclusion, our study revealed that EA pretreatment may attenuate the ischemic brain injury by inhibiting glycolysis and increasing the levels of some neuroprotective metabolites.