The American journal of Chinese medicine
-
Review
Research Progress of Chinese Medicine in Treating Chronic Liver Disease by Regulating Autophagy.
In recent years, rising living standards and an accelerated lifestyle have led to an increase in the incidence of chronic liver disease. Modern medicine has yet to fully develop effective methods for preventing and treating these conditions due to their complex pathogenesis. Autophagy, a cellular process that maintains homeostasis by removing abnormal proteins, has emerged as a promising therapeutic target for chronic liver diseases. ⋯ Recent research demonstrates that Chinese medicine - comprising single herbs, herbal combinations, and proprietary formulas - can effectively regulate autophagy, thereby providing therapeutic and preventive benefits for chronic liver diseases. This paper reviews recent studies, categorizes various chronic liver diseases, and examines the impact of active ingredients and compound formulas from Chinese medicine on autophagy. These insights are crucial for slowing the progression of chronic liver diseases and pave the way for the future application of Chinese medicine in preventing and managing these conditions through autophagy modulation.
-
Due to their complex pathological mechanisms, neurodegenerative diseases have brought great challenges to drug development and clinical treatment. Studies have shown that many traditional Chinese medicines have neuroprotective pharmacological activities such as anti-inflammatory and anti-oxidation properties and have certain effects on improving the symptoms of neurodegenerative diseases and delaying disease progression. ⋯ This paper focuses on the neuroprotective effects of six common flavonoids: quercetin, rutin, luteolin, kaempferol, baicalein, and puerarin. It then systematically reviews their characteristics, mechanisms, and key signaling pathways, summarizes the common characteristics and laws of their neuroprotective effects, and discusses the significance of strengthening the research on the neuroprotective effects of these compounds, aiming to provide reference for more research and drug development of these substances as neuroprotective drugs.
-
Atractylodin is one of the main active ingredients of Atractylodis Rhizoma. It has various pharmacological properties, such as antigastric ulcer, immune regulation, antibacterial, anti-inflammatory, antitumor, anti-oxidant, and neuroprotective properties. In the past few decades, atractylodin has attracted the attention of researchers due to its excellent therapeutic effects. ⋯ Among them, the pathways related to G1/M are more widely stagnated. In inhibiting the migration and invasion of cancer cells, atractylodin mainly regulates the Wnt signaling pathway, downregulates the expression of N-cadherin in cancer cells, and then blocks the PI3K/AKT/mTOR signaling pathway, inhibiting the phosphorylation of PI3K, AKT, and mTOR proteins, thereby having a significant impact on the invasion and migration of cancer cells. This paper systematically reviews the research progress on the antitumor effects and mechanisms of atractylodin, hoping to provide a reference and theoretical basis for its clinical application and new drug development.
-
Artemisinin (ART) and its derivatives, collectively referred to as artemisinins (ARTs), have been approved for the treatment of malaria for decades. ARTs are converted into dihydroartemisinin (DHA), the only active form, which is reductive in vivo. In this review, we provide a brief overview of the neuroprotective potential of ARTs and the underlying mechanisms on several of the most common neurodegenerative diseases, particularly considering their potential application in those associated with cognitive and motor impairments including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). ⋯ ARTs can also inhibit ferroptosis, activate the Akt/Bcl-2, AMPK, or ERK/CREB pathways to reduce oxidative stress, and maintain mitochondrial homeostasis, protecting neurons from oxidative stress injury. More importantly, ARTs structurally combine with and suppress β-Amyloid (A[Formula: see text]-induced neurotoxicity, reduce P-tau, and maintain O-GlcNAcylation/Phosphorylation balance, leading to relieved pathological changes in neurodegenerative diseases. Collectively, these natural properties endow ARTs with unique potential for application in neurodegenerative diseases.
-
Atherosclerosis is a significant risk factor for developing cardiovascular disease and a leading cause of death worldwide. The occurrence of atherosclerosis is closely related to factors such as endothelial injury, lipid deposition, immunity, and inflammation. Conventional statins, currently used in atherosclerosis treatment, have numerous adverse side effects that limit their clinical utility, prompting the urgent need to identify safer and more effective therapeutic alternatives. ⋯ This approach targets the disease mechanism in multiple ways, enhancing the therapeutic effects. Thus, this review examines the roles of Chinese herbal medicine monomers and Chinese herbal compounds in inhibiting atherosclerosis, including regulating lipids, improving endothelial function, reducing oxidative stress, regulating inflammation and the immune response, and apoptosis. By highlighting these roles, our study offers new perspectives on atherosclerosis treatment with Chinese herbs and is anticipated to contribute to advancements in related research fields.