Journal of neurosurgery. Spine
-
The authors conducted a retrospective observational study using kinetic MR imaging to investigate the relationship between instability, abnormal sagittal segmental motion, and radiographic variables consisting of intervertebral disc degeneration, facet joint osteoarthritis (FJO), degeneration of the interspinous ligaments, ligamentum flavum hypertrophy (LFH), and the status of the paraspinal muscles. ⋯ This kinetic MR imaging analysis showed that the lumbar functional unit with more disc degeneration, FJO, and LFH had abnormal sagittal plane translation and angulation. These findings suggest that abnormal segmental motion noted on kinetic MR images is closely associated with disc degeneration, FJO, and the pathological characteristics of interspinous ligaments, ligamentum flavum, and paraspinal muscles. Kinetic MR imaging in patients with mechanical back pain may prove a valuable source of information about the stability of the functional spine unit by measuring abnormal segmental motion and grading of radiographic parameters simultaneously.
-
The authors present 2 cases involving patients who presented with myelopathy. Magnetic resonance imaging of the cervical spine showed spinal cord signal changes on T2-weighted images without any spinal cord compression. ⋯ Compression of the spinal cord was caused by dynamic anulus bulging and ligamentum flavum buckling. This report emphasizes the need for dynamic MR imaging of the cervical spine for evaluating spinal cord changes on neutral position MR imaging before further workup for other causes such as demyelinating disease.
-
Review Case Reports
Thoracolumbar spine trauma classification: the Thoracolumbar Injury Classification and Severity Score system and case examples.
The aim of this study was to review the Thoracolumbar Injury Classification and Severity Score (TLICS) and to demonstrate its application through a series of spine trauma cases. ⋯ By addressing both the posterior ligamentous integrity and the patient's neurological status, the TLICS system attempts to overcome the limitations of prior thoracolumbar classification systems. The TLICS system has demonstrated both validity and reliability and has also been shown to be readily learned and incorporated into clinical practice.
-
Randomized Controlled Trial
Intrathecal pressure monitoring and cerebrospinal fluid drainage in acute spinal cord injury: a prospective randomized trial.
Ischemia is an important factor in the pathophysiology of secondary damage after traumatic spinal cord injury (SCI) and, in the setting of thoracoabdominal aortic aneurysm repair, can be the primary cause of paralysis. Lowering the intrathecal pressure (ITP) by draining CSF is routinely done in thoracoabdominal aortic aneurysm surgery but has not been evaluated in the setting of acute traumatic SCI. Additionally, while much attention is directed toward maintaining an adequate mean arterial blood pressure (MABP) in the acute postinjury phase, little is known about what is happening to the ITP during this period when spinal cord perfusion pressure (MABP - ITP) is important. The objectives of this study were to: 1) evaluate the safety and feasibility of draining CSF to lower ITP after acute traumatic SCI; 2) evaluate changes in ITP before and after surgical decompression; and 3) measure neurological recovery in relation to the drainage of CSF. ⋯ The insertion of lumbar intrathecal catheters and the drainage of CSF were not associated with significant adverse events, although the cohort was small and only a limited amount of CSF was drained. Intraoperative decompression of the spinal cord results in an increase in the ITP measured caudal to the injury site. Increases in intrathecal pressure are additionally observed in the postoperative period. These increases in intrathecal pressure result in reduced spinal cord perfusion that will otherwise go undetected when measuring only the MABP. Characteristic changes in the observed intrathecal pressure waveform occur after surgical decompression, reflecting the restoration of CSF flow across the SCI site. As such, the waveform pattern may be used intraoperatively to determine if adequate decompression of the thecal sac has been accomplished.
-
The use of pedicle screws (PSs) for stabilization of unstable thoracolumbar fractures has become the standard of care, but PS efficacy has not been reported in the upper thoracic spine. The primary outcome of this study was to determine the efficacy of PS fixation to achieve and maintain reduction of unstable upper thoracic spine fractures (T1-5). Secondary outcomes included scores on a 1-year postoperative generic health-related quality of life (QOL) questionnaire and postoperative complications. ⋯ In the hands of fellowship-trained spinal surgeons, PS fixation for reduction and stabilization of upper thoracic spine fractures is a safe and efficacious technique. Health-related QOL outcome data are deficient for spine trauma patients and should be an essential component of quantifying treatment outcomes.