International wound journal
-
Comparative Study
Antimicrobial dressing efficacy against mature Pseudomonas aeruginosa biofilm on porcine skin explants.
An ex vivo porcine skin explant biofilm model that preserves key properties of biofilm attached to skin at different levels of maturity (0-3 days) was used to assess the efficacy of commercially available antimicrobial dressings and topical treatments. Assays were also performed on the subpopulation of antibiotic tolerant biofilm generated by 24 hours of pre-treatment with gentamicin (120× minimal inhibitory concentration) prior to agent exposure. ⋯ Similar results were found after 24-hour exposure to silver release dressings using an in vivo pig burn wound model, demonstrating correlation between the ex vivo and in vivo models. Results of this study indicate that commonly used microbicidal wound dressings vary widely in their ability to kill mature biofilm and the efficacy is influenced by time of exposure, number of applications, moisture level and agent formulation (sustained release).
-
Randomized Controlled Trial
A prospective, randomised study of a novel transforming methacrylate dressing compared with a silver-containing sodium carboxymethylcellulose dressing on partial-thickness skin graft donor sites in burn patients.
This prospective, randomised study compares a new transforming methacrylate dressing (TMD) with a silver-containing carboxymethylcellulose dressing (CMC-Ag) after application to split-thickness skin graft (STSG) donor sites. This was an unblinded, non-inferiority, between-patient, comparison study that involved patients admitted to a single-centre burn unit who required two skin graft donor sites. Each patient's donor sites were covered immediately after surgery: one donor site with TMD and the other with CMC-Ag. ⋯ Patients also reported greater comfort with TMD (P < 0·001). Users rated TMD as being less easy to use because of the time and technique required for application. Reductions in pain and increased patient comfort with the use of the TMD dressing, compared with CMC-Ag, were seen as clinical benefits as these are the major issues in donor site management.
-
Multicenter Study
Vacuum-assisted closure therapy for vascular graft infection (Szilagyi grade III) in the groin-a 10-year multi-center experience.
The aim of the study was to evaluate the benefit of vacuum-assisted closure (VAC) therapy in the management of deep, alloplastic graft infections (Szilagyi grade III) in the groin. From 2000 to 2009, we identified and included in our study 72 deep inguinal infections in 68 patients, involving native as well as synthetic graft or patch material. There were 29 early graft infections (<30 days after implantation) and 43 late infections (≥30 days after implantation). ⋯ Negative pressure wound therapy (NPWT) has been reported to be useful in the treatment of severe wound infections. Even in the presence of synthetic vascular graft material, NPWT can greatly simplify challenging wound-healing problems leading to wound dehiscence and its sequelae. Our long-term experience demonstrates the safety and effectiveness of VAC therapy in the management of deep graft infections.
-
The prevention of hospital acquired pressure ulcers in critically ill patients remains a significant clinical challenge. The aim of this trial was to investigate the effectiveness of multi-layered soft silicone foam dressings in preventing intensive care unit (ICU) pressure ulcers when applied in the emergency department to 440 trauma and critically ill patients. Intervention group patients (n = 219) had Mepilex(®) Border Sacrum and Mepilex(®) Heel dressings applied in the emergency department and maintained throughout their ICU stay. ⋯ Overall there were fewer sacral (2 versus 8, P = 0·05) and heel pressure ulcers (5 versus 19, P = 0·002) and pressure injuries overall (7 versus 27, P = 0·002) in interventions than in controls. The time to injury survival analysis indicated that intervention group patients had a hazard ratio of 0·19 (P = 0·002) compared to control group patients. We conclude that multi-layered soft silicone foam dressings are effective in preventing pressure ulcers in critically ill patients when applied in the emergency department prior to ICU transfer.