PLoS pathogens
-
The COVID-19 pandemic highlights the substantial public health, economic, and societal consequences of virus spillover from a wildlife reservoir. Widespread human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also presents a new set of challenges when considering viral spillover from people to naïve wildlife and other animal populations. The establishment of new wildlife reservoirs for SARS-CoV-2 would further complicate public health control measures and could lead to wildlife health and conservation impacts. ⋯ Here, we review the diversity and natural host range of β-CoVs in bats and examine the risk of humans inadvertently infecting free-ranging bats with SARS-CoV-2. Our review of the global distribution and host range of β-CoV evolutionary lineages suggests that 40+ species of temperate-zone North American bats could be immunologically naïve and susceptible to infection by SARS-CoV-2. We highlight an urgent need to proactively connect the wellbeing of human and wildlife health during the current pandemic and to implement new tools to continue wildlife research while avoiding potentially severe health and conservation impacts of SARS-CoV-2 "spilling back" into free-ranging bat populations.
-
Coronavirus Disease 2019 (COVID-19) pandemic remains a major public health threat in most countries. The causative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus can lead to acute respiratory distress syndrome and result in mortality in COVID-19 patients. Vitamin D is an immunomodulator hormone with established effectiveness against various upper respiratory infections. ⋯ Thus, there are ecological and mechanistic reasons to promote exploration of vitamin D action in COVID-19 patients. As no curative drugs are available currently for COVID-19, we feel that the potential of vitamin D to alter the course of disease severity needs to be investigated. Clinical studies may be undertaken to address the value of vitamin D supplementation in deficient, high-risk COVID-19 patients.
-
Review
COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2.
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a newly emerging, highly transmissible, and pathogenic coronavirus in humans that has caused global public health emergencies and economic crises. To date, millions of infections and thousands of deaths have been reported worldwide, and the numbers continue to rise. Currently, there is no specific drug or vaccine against this deadly virus; therefore, there is a pressing need to understand the mechanism(s) through which this virus enters the host cell. ⋯ In this review, we summarize the current knowledge on the origin and evolution of SARS-CoV-2 and the roles of key viral factors. We discuss the structure of RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 and its significance in drug discovery and explain the receptor recognition mechanisms of coronaviruses. Further, we provide a comparative analysis of the SARS-CoV and SARS-CoV-2 S proteins and their receptor-binding specificity and discuss the differences in their antigenicity based on biophysical and structural characteristics.
-
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel coronavirus that has caused a worldwide pandemic of the human respiratory illness COVID-19, resulting in a severe threat to public health and safety. Analysis of the genetic tree suggests that SARS-CoV-2 belongs to the same Betacoronavirus group as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). ⋯ There is currently no specific treatment for COVID-19, but antiviral therapy combined with supportive care is the main strategy. Here, we summarize recent progress in understanding the epidemiological, virological, and clinical characteristics of COVID-19 and discuss potential targets with existing drugs for the treatment of this emerging zoonotic disease.
-
The outbreak of a novel corona Virus Disease 2019 (COVID-19) in the city of Wuhan, China has resulted in more than 1.7 million laboratory confirmed cases all over the world. Recent studies showed that SARS-CoV-2 was likely originated from bats, but its intermediate hosts are still largely unknown. In this study, we assembled the complete genome of a coronavirus identified in 3 sick Malayan pangolins. ⋯ Our study suggests that pangolins are natural hosts of Betacoronaviruses. Large surveillance of coronaviruses in pangolins could improve our understanding of the spectrum of coronaviruses in pangolins. In addition to conservation of wildlife, minimizing the exposures of humans to wildlife will be important to reduce the spillover risks of coronaviruses from wild animals to humans.