PLoS computational biology
-
Shading is known to produce vivid perceptions of depth. However, the influence of specular highlights on perceived shape is unclear: some studies have shown that highlights improve quantitative shape perception while others have shown no effect. Here we ask how specular highlights combine with Lambertian shading cues to determine perceived surface curvature, and to what degree this is based upon a coherent model of the scene geometry. ⋯ Increasing the depth of the surface or the slant of the illuminant also modulated the effect of the highlight, increasing the bias toward convexity. The effect of highlights on perceived shape can be understood probabilistically in terms of scene geometry: for deeper objects and/or highly slanted illuminants, highlights will occur on convex but not concave surfaces, due to occlusion of the illuminant. Given uncertainty about the exact object depth and illuminant direction, the presence of a highlight increases the probability that the surface is convex.
-
The mucosa of the intestinal tract represents a finely tuned system where tissue structure strongly influences, and is turn influenced by, its function as both an absorptive surface and a defensive barrier. Mucosal architecture and histology plays a key role in the diagnosis, characterization and pathophysiology of a host of gastrointestinal diseases. Inflammation is a significant factor in the pathogenesis in many gastrointestinal diseases, and is perhaps the most clinically significant control factor governing the maintenance of the mucosal architecture by morphogenic pathways. ⋯ Towards this end we have developed the Spatially Explicit General-purpose Model of Enteric Tissue (SEGMEnT) to dynamically represent existing knowledge of the behavior of enteric epithelial tissue as influenced by inflammation with the ability to generate a variety of pathophysiological processes within a common platform and from a common knowledge base. In addition to reproducing healthy ileal mucosal dynamics as well as a series of morphogen knock-out/inhibition experiments, SEGMEnT provides insight into a range of clinically relevant cellular-molecular mechanisms, such as a putative role for Phosphotase and tensin homolog/phosphoinositide 3-kinase (PTEN/PI3K) as a key point of crosstalk between inflammation and morphogenesis, the protective role of enterocyte sloughing in enteric ischemia-reperfusion and chronic low level inflammation as a driver for colonic metaplasia. These results suggest that SEGMEnT can serve as an integrating platform for the study of inflammation in gastrointestinal disease.