Journal of biomechanics
-
Journal of biomechanics · May 2016
μFE models can represent microdamaged regions of healthy and metastatically involved whole vertebrae identified through histology and contrast enhanced μCT imaging.
Micro-damage formation within the skeleton is an important stimulant for bone remodeling, however abnormal build-up of micro-damage can lead to skeletal fragility. In this study, µCT imaging based micro finite element (μFE) models were used to evaluate tissue level damage criteria in whole healthy and metastatically-involved vertebrae. T13-L2 spinal segments were excised from osteolytic (n=3) and healthy (n=3) female athymic rnu/rnu rats. ⋯ Additionally, damaged regions of metastatic vertebrae experienced significantly higher local stresses and strains than those in the damaged regions of healthy specimens. Areas identified by BaSO4 staining, however, yielded lower levels of stress and strain in damaged and undamaged regions of healthy and metastatic vertebrae as compared to fuschin staining. The multimodal (experimental, image-based and computational) techniques used in this study demonstrated the ability of local stresses and strains computed through µFE analysis to identify trabecular micro-damage, that can be applied to biomechanical analyses of healthy and diseased whole bones.
-
Journal of biomechanics · Apr 2016
Supporting the upper body with the hand on the thigh reduces back loading during lifting.
When picking objects from the floor, low back pain patients often tend to support the upper body by leaning with one hand on a thigh. While this strategy may reduce back load, this has not yet been assessed, probably due to the difficulty of measuring the forces between hand and thigh. Ten healthy male subjects lifted a pencil and a crate from the floor, with four lifting techniques (free, squat, stoop and a Weight Lifters Technique (WLT)), each of which was performed with and without supporting with one hand on the thigh. ⋯ Hand support slightly increased asymmetric motions and caused a substantial increase in asymmetric moments in crate lifting. For compression forces, reductions (up to 28%) were seen in all techniques except in stoop lifts. It is concluded that leaning with a hand on the thigh can lead to substantial reductions of low back loading during lifting.
-
Journal of biomechanics · Apr 2016
Sagittal range of motion of the thoracic spine using inertial tracking device and effect of measurement errors on model predictions.
Range of motion (ROM) of the thoracic spine has implications in patient discrimination for diagnostic purposes and in biomechanical models for predictions of spinal loads. Few previous studies have reported quite different thoracic ROMs. Total (T1-T12), lower (T5-T12) and upper (T1-T5) thoracic, lumbar (T12-S1), pelvis, and entire trunk (T1) ROMs were measured using an inertial tracking device as asymptomatic subjects flexed forward from their neutral upright position to full forward flexion. ⋯ There were non-significant weak correlations between body height and the ROMs. Contribution of the pelvis to generate the total trunk flexion increased from ~20% to 40% and that of the lumbar decreased from ~60% to 42% as subjects flexed forward from upright to maximal flexion while that of the thoracic spine remained almost constant (~16% to 20%) during the entire movement. Small uncertainties (±5°) in the measurement of trunk flexion angle resulted in considerable errors (~27%) in the model-predicted spinal loads only in activities involving small trunk flexion.
-
Journal of biomechanics · Apr 2016
Fluid-flow dependent response of intervertebral discs under cyclic loading: On the role of specimen preparation and preconditioning.
In vivo during the day, intervertebral discs are loaded mainly in compression causing fluid and height losses that are subsequently fully recovered overnight due to fluid inflow under smaller compression. However, in vitro, fluid flow through the endplates, in particular fluid imbibition, is hampered possibly by blood clots formed post mortem. Despite earlier in vitro studies, it remains yet unclear if and how fluid flow conditions in vitro could properly emulate those in vivo. ⋯ Results highlight the significant role of disc preload magnitude in disc height recovery during low loading periods. Attention should hence be given in future studies to the proper selection of preload magnitude and duration as well as the animal models used if in vivo response is intended to be replicated. Findings also indicate that flushing the endplates or injection of bone cement respectively neither facilitates nor impedes fluid flow into or out of the disc to a noticeable degree in this bovine disc model.
-
Journal of biomechanics · Apr 2016
On the load-sharing along the ligamentous lumbosacral spine in flexed and extended postures: Finite element study.
A harmonic synergy between the load-bearing and stabilizing components of the spine is necessary to maintain its normal function. This study aimed to investigate the load-sharing along the ligamentous lumbosacral spine under sagittal loading. A 3D nonlinear detailed Finite Element (FE) model of lumbosacral spine with realistic geometry was developed and validated using wide range of numerical and experimental (in-vivo and in-vitro) data. ⋯ The ligaments withstood up to 67% and 81% of the total internal moment in cases of FL combined with EXT and FLX, respectively. Contribution of the facet joints in resisting internal force and moment was noticeable at levels L4-S1 only particularly in case of FL combined with EXT and reached up 29% and 52% of the internal moment and force, respectively. This study demonstrated that spinal load-sharing depended on applied load and varied along the spine.