Microvascular research
-
Microvascular research · May 2014
Impact of long-term exposure to cigarette smoking on skin microvascular function.
In order to evaluate the impact of cigarettes smoking and smokers' clinical characteristics on skin microvascular function, we measured the skin forearm blood flux, basally and during post-occlusive reactive hyperaemia, in 100 current smokers (mean age 51±11 years; range: 18 to 86 years) and in 66 healthy never-smokers matched for age and sex, by using laser Doppler fluximetry (LDF). Basal and post-ischemic LDF tracings were analyzed in the frequency domain within 0.009-0.02 Hz, 0.021-0.06 Hz and 0.061-0.2 Hz ranges, related to endothelial-dependent, sympathetic-dependent and myogenic-dependent vasomotion, respectively, using an adapted version of the Fourier analysis. The post-ischemic percentage change from baseline of the area under the LDF curve (AUC%) was significantly lower in smokers than in never-smokers [162.5% (139.3-183.0) vs 190.1% (156.3-216.8); p=0.00016]. ⋯ An inverse relationship was observed in smokers between AUC% and smoking exposure duration (r=0.23, p=0.018), pack-years (r=0.33, p=0.0007), age (r=0.26, p=0.008) and body mass index (r=0.21, p=0.037). In the multiple linear regression model, pack-years was the only variable independently associated with AUC% (r=0.21, p=0.03). This study confirms that smoking is associated with cutaneous microvascular dysfunction and shows that the severity of this impairment is independently related to the duration and intensity of the exposure to smoking.
-
Microvascular research · Jan 2014
Transient oxygen-glucose deprivation sensitizes brain capillary endothelial cells to rtPA at 4h of reoxygenation.
Thrombolysis treatment of acute ischemic stroke is limited by the pro-edematous and hemorrhagic effects exerted by reperfusion, which disrupts the blood-brain barrier (BBB) capillary endothelium in the infarct core. Most studies of the ischemic BBB overlook the complexity of the penumbral area, where the affected brain cells are still viable following deprivation. Our present objective was to examine in vitro the kinetic impact of reoxygenation on the integrity of ischemic BBB cells after oxygen-glucose deprivation. ⋯ Interestingly, the reoxygenated BBB broke down with aggravated tight junction disruption when exposed to rtPA only at 4h after reoxygenation. Moreover, this breakdown was enhanced by 50% when ischemic glial cells were present during the first hours of reoxygenation. Our results suggest that post-stroke reoxygenation enables retrieval of the barrier function of brain capillary endothelium when in a non-necrotic environment, but may sensitize it to rtPA at the 4-hour time point, when both endothelial breakdown mechanisms and glial secretions could be identified and targeted in a therapeutical perspective.
-
Microvascular research · Jan 2014
Effects of non-leukocyte-reduced and leukocyte-reduced packed red blood cell transfusions on oxygenation of rat spinotrapezius muscle.
Leukoreduction of blood used for transfusion alleviates febrile transfusion reactions, graft versus host disease and alloimmunization to leukocyte antigen. However, the actual clinical benefit of leukoreduction in terms of microcirculatory tissue O2 delivery after packed red blood cell (pRBC) transfusion has not been investigated. As such, the aim of this study was to determine the effects of non-leukoreduced (NLR) and leukoreduced (LR) fresh pRBC transfusion on interstitial oxygenation in anesthetized male Sprague-Dawley rats. ⋯ These data suggest that transfusion of fresh NLR-pRBCs may negatively affect tissue oxygenation via enhanced leukocyte influx and decreased O2 delivery. They also suggest that leukocytes diminish the capability of transfused pRBCs to increase cardiac output. As such, transfusion of LR-pRBCs may be less deleterious on tissue PO2 levels than NLR-pRBCs although a concomitantly greater increase in ABP may accompany transfusion of LR-pRBCs.
-
Microvascular research · Nov 2013
Observational StudyAlteration of the sublingual microvascular glycocalyx in critically ill patients.
Glycocalyx degradation may contribute to microvascular dysfunction and tissue hypoperfusion during systemic inflammation and sepsis. In this observational study we evaluated the alteration of the sublingual microvascular glycocalyx in 16 healthy volunteers and 50 critically ill patients. Sidestream Dark Field images of the sublingual microcirculation were automatically analyzed by dedicated software. ⋯ A PBR of 2.76 showed the best discriminative ability towards the presence of sepsis (sensitivity: 50%, specificity: 83%; area under the receiver operating characteristic curve: 0.67, 95% CI 0.52-0.82, p=0.05). A weak positive correlation was found between PBR and heart rate (r=0.3, p=0.03). In 17 septic patients, a correlation was found between PBR and number of rolling leukocytes in post-capillary venules (RL/venule) (r=0.55, p=0.02), confirming that glycocalyx shedding enhances leukocyte-endothelium interaction.
-
Microvascular research · Nov 2013
Acute, short-term hypercapnia improves microvascular oxygenation of the colon in an animal model of sepsis.
The deterioration of microcirculatory oxygenation of the gut plays a vital role in the development of sepsis. Acute hypercapnia enhances the microcirculatory oxygenation of the splanchnic region under physiological conditions, while the effect of hypercapnia under sepsis is unknown. The aim of this study was to investigate the effects of acute hypercapnia and hypercapnic acidosis on the colonic microcirculation and early cytokine response in polymicrobial sepsis. ⋯ Acute hypercapnic acidosis and buffered hypercapnia both improve splanchnic microcirculatory oxygenation in a septic animal model, thereby counteracting the adverse effect induced by sepsis. The circulating pro- and anti-inflammatory cytokine levels are not modulated after 120min of hypercapnia.