Translational research : the journal of laboratory and clinical medicine
-
Fu's subcutaneous needling (FSN) is a traditional Chinese acupuncture procedure used to treat pain-related neurological disorders. Moreover, the regulation of inflammatory cytokines may provide a favorable environment for peripheral nerve regeneration. In light of this, FSN may be an important novel therapeutic strategy to alleviate pain associated with peripheral neuropathy; however, the underlying molecular mechanisms remain unclear. ⋯ Mechanistically, RNA sequencing and gene set enrichment analysis revealed significantly reduced inflammatory pathways, neurotransmitters, and endoplasmic reticulum stress pathways and increased nerve regeneration factors in the FSN+CCI group, compared with that in the CCI group. Finally, immunohistochemistry, immunoblotting and enzyme-linked immunosorbent assay showed similar results in the dorsal root ganglia and sciatic nerve. Our findings suggest that FSN can effectively ameliorate peripheral neuropathic pain by regulate inflammation and endoplasmic reticulum stress, thereby determine its beneficial application in patients with peripheral nerve injuries.
-
Pulmonary hypertension (PH) is a medical condition characterized by elevated pulmonary vascular resistance and pressure, resulting from different diseases. Due to their high occurrence of PH, intricate hemodynamic classification, and frequently multifactorial cause and mechanism, individuals suffering from chronic kidney disease (CKD) are categorized as the fifth primary group of PH. Based on both domestic and international research, this article provides information on the epidemiology, risk factors, pathogenesis, and targeted drug treatment of PH associated with CKD.
-
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by inflammation in the synovial lining of the joints. Key inflammatory cytokines such as interleukin-6 (IL-6), TNF-α, and others play a critical role in the activation of local synovial leukocytes and the induction of chronic inflammation. Tocilizumab (TCZ), a humanized anti-IL-6 receptor monoclonal antibody, has demonstrated significant clinical efficacy in treating RA patients. ⋯ The constructed multi-biomarker panel demonstrated an average discriminative power of 86 % between response and non-response groups, with a high area under the curve (AUC) value of 0.84. Additionally, the panel exhibited 100 % sensitivity and 60 % specificity. Collectively, our multi-biomarker panel holds promise as a diagnostic tool to predict non-responders to TCZ treatment in RA patients.
-
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at metastatic stage and typically treated with fluorouracil, leucovorin, irinotecan and oxaliplatin (FOLFIRINOX). Few patients benefit from this treatment. Molecular subtypes are prognostic in particularly resectable PDAC and might predict treatment response. ⋯ GATA6 knockdown models did not lead to increased FOLFIRINOX responsiveness. These data suggest a predictive role for subtyping (transcriptomic and GATA6 IHC), though no direct causal relationship was found between GATA6 expression and chemoresistance. GATA6 immunohistochemistry should be seamlessly added to current diagnostics and integrated into upcoming clinical trials.
-
Cardiac fibrosis occurs following insults to the myocardium and is characterized by the abnormal accumulation of non-compliant extracellular matrix (ECM), which compromises cardiomyocyte contractile activity and eventually leads to heart failure. This phenomenon is driven by the activation of cardiac fibroblasts (cFbs) to myofibroblasts and results in changes in ECM biochemical, structural and mechanical properties. The lack of predictive in vitro models of heart fibrosis has so far hampered the search for innovative treatments, as most of the cellular-based in vitro reductionist models do not take into account the leading role of ECM cues in driving the progression of the pathology. ⋯ Next, we used Mass Spectrometry, nanoindentation, scanning electron and confocal microscopy to unveil the characteristic composition and the visco-elastic properties of the abundant, collagen-rich ECM deposited by cardiac myofibroblasts in vitro. Finally, we demonstrated that the fibrotic ECM activates mechanosensitive pathways in iPSC-derived cardiomyocytes, impacting on their shape, sarcomere assembly, phenotype, and calcium handling properties. We thus propose human bio-inspired decellularized matrices as animal-free, isogenic cardiomyocyte culture substrates recapitulating key pathophysiological changes occurring at the cellular level during cardiac fibrosis.