Translational research : the journal of laboratory and clinical medicine
-
Epithelial ovarian cancer is a significant global health issue among women. Diagnosis and treatment pose challenges due to difficulties in predicting patient responses to therapy, primarily stemming from gaps in understanding tumor chemoresistance mechanisms. Recent advancements in transcriptomic technologies like single-cell RNA sequencing and spatial transcriptomics have greatly improved our understanding of ovarian cancer intratumor heterogeneity and tumor microenvironment composition. ⋯ Studies investigating the spatial distribution of gene expression in ovarian cancer masses have identified specific features that impact prognosis and therapy outcomes. Emerging evidence suggests that specific spatial patterns of tumor cells and their immune and non-immune microenvironment significantly influence therapy response, as well as the behavior and progression of primary tumors and metastatic sites. The importance of spatially contextualizing ovarian cancer transcriptomes is underscored by these findings, which will advance our understanding and therapeutic approaches for this complex disease.
-
Pulmonary hypertension (PH) is a medical condition characterized by elevated pulmonary vascular resistance and pressure, resulting from different diseases. Due to their high occurrence of PH, intricate hemodynamic classification, and frequently multifactorial cause and mechanism, individuals suffering from chronic kidney disease (CKD) are categorized as the fifth primary group of PH. Based on both domestic and international research, this article provides information on the epidemiology, risk factors, pathogenesis, and targeted drug treatment of PH associated with CKD.
-
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at metastatic stage and typically treated with fluorouracil, leucovorin, irinotecan and oxaliplatin (FOLFIRINOX). Few patients benefit from this treatment. Molecular subtypes are prognostic in particularly resectable PDAC and might predict treatment response. ⋯ GATA6 knockdown models did not lead to increased FOLFIRINOX responsiveness. These data suggest a predictive role for subtyping (transcriptomic and GATA6 IHC), though no direct causal relationship was found between GATA6 expression and chemoresistance. GATA6 immunohistochemistry should be seamlessly added to current diagnostics and integrated into upcoming clinical trials.
-
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by inflammation in the synovial lining of the joints. Key inflammatory cytokines such as interleukin-6 (IL-6), TNF-α, and others play a critical role in the activation of local synovial leukocytes and the induction of chronic inflammation. Tocilizumab (TCZ), a humanized anti-IL-6 receptor monoclonal antibody, has demonstrated significant clinical efficacy in treating RA patients. ⋯ The constructed multi-biomarker panel demonstrated an average discriminative power of 86 % between response and non-response groups, with a high area under the curve (AUC) value of 0.84. Additionally, the panel exhibited 100 % sensitivity and 60 % specificity. Collectively, our multi-biomarker panel holds promise as a diagnostic tool to predict non-responders to TCZ treatment in RA patients.
-
Cardiac fibrosis occurs following insults to the myocardium and is characterized by the abnormal accumulation of non-compliant extracellular matrix (ECM), which compromises cardiomyocyte contractile activity and eventually leads to heart failure. This phenomenon is driven by the activation of cardiac fibroblasts (cFbs) to myofibroblasts and results in changes in ECM biochemical, structural and mechanical properties. The lack of predictive in vitro models of heart fibrosis has so far hampered the search for innovative treatments, as most of the cellular-based in vitro reductionist models do not take into account the leading role of ECM cues in driving the progression of the pathology. ⋯ Next, we used Mass Spectrometry, nanoindentation, scanning electron and confocal microscopy to unveil the characteristic composition and the visco-elastic properties of the abundant, collagen-rich ECM deposited by cardiac myofibroblasts in vitro. Finally, we demonstrated that the fibrotic ECM activates mechanosensitive pathways in iPSC-derived cardiomyocytes, impacting on their shape, sarcomere assembly, phenotype, and calcium handling properties. We thus propose human bio-inspired decellularized matrices as animal-free, isogenic cardiomyocyte culture substrates recapitulating key pathophysiological changes occurring at the cellular level during cardiac fibrosis.