Translational research : the journal of laboratory and clinical medicine
-
Diabetes mellitus (DM) and calcific aortic stenosis (CAS) are common morbidities in the elderly, which are both chronic, progressive and often concomitant diseases. Several studies revealed that DM increases the risk of developing severe CAS, yet clear information about the relationship between both these diseases and the influence of DM on the progression of CAS is currently lacking. To evaluate the effect of DM on aortic valves and on the process of calcification, and to achieve better patient management in daily clinical practice, we analysed calcified and noncalcified valve tissue from patients with severe CAS, with or without DM. ⋯ The differentially expressed proteins identified are implicated in biological processes like endopeptidase activity, lipid metabolism, coagulation, and fibrinolysis. The results obtained provide evidence that DM provokes changes in the proteome of aortic valves, affecting valve calcification. This finding may help enhance our understanding of the pathogenesis of CAS and how DM affects the evolution of this condition, an important step in identifying targets to personalize the treatment of these patients.
-
Phenotypic switch of vascular smooth muscle cells (VSMCs) contributes to the pathogenesis of atherosclerosis (AS). High level of retinol binding protein 4 (RBP4) is regarded as a risk factor in cardiac-cerebral vascular disease. This study is performed to clarify the biological function of RBP4 in modulating the phenotypic switch of VSMCs induced via RhoA/ROCK1 signaling pathway. ⋯ As expected, ROCK1 inhibit or counteracted the biological effects of RBP4 on VSMCs. In addition, the expressions of contractile phenotypic markers, LC3II/I, and Beclin-1 were promoted and mTOR were decreased after the VSMCs treated with autophagy agonist, whereas no significant difference was observed in the expressions of ROCK1, RhoA. RBP4 is an injurious factor in the pathogenesis of diabetic AS, and it promotes the phenotypic switch of VSMCs via activating RhoA/ROCK1 pathway and inhibiting autophagy.
-
Chimeric antigen receptor T cell (CAR-T) therapy has limited efficacy for treating glioma because of the infiltrative nature of the blood-brain barrier (BBB) and T cell exhaustion. Conjugation with rabies virus glycoprotein (RVG) 29 enhances the brain-related efficacy of various agents. Here we assess whether RVG enhances the ability of CAR-T cells to cross the BBB and improves their immunotherapy. ⋯ Moreover, 70R CAR-T cells significantly promote the regression of glioma xenografts and improve the physical characteristics of mice without causing overt adverse effects. RVG modification enables CAR-T cells to cross the BBB, and stimulation with glioma cells induces 70R CAR-T cells to expand in a resting state. The modification of RVG29 has a positive impact on CAR-T therapy for brain tumors and may have potential in CAR-T therapy for glioma.
-
Diabetic nephropathy remains a common cause of end-stage renal failure and its associated mortality around the world. Sphingosine 1-phosphate (S1P) is a multifunctional lipid mediator and binds to HDL via apolipoprotein M (ApoM). Since HDL has been reported to be epidemiologically associated with kidney disease, we attempted to investigate the involvement of the ApoM/S1P axis in the pathogenesis/progression of diabetic nephropathy. ⋯ ApoM/S1P axis attenuated activation of the Smad3 pathway, while augmented eNOS phosphorylation through the S1P1 pathway. Moreover, ApoM/S1P increased the SIRT1 protein levels and enhanced mitochondrial functions by increasing the S1P content of the cell membrane, which might cause selective activation of S1P1. ApoM might be a useful biomarker for predicting the progression of diabetic nephropathy, and the ApoM/S1P-S1P1 axis might serve as a novel therapeutic target for preventing the development/progression of diabetic nephropathy.
-
The purinergic receptor P2X7 has been established as an important mediator of inflammation and participates in a variety of cardiovascular diseases including atherosclerosis, however, its role in abdominal aortic aneurysms (AAA) remains unclear. In this study, we demonstrate that P2X7 plays essential roles in AAA development via modulating macrophage pyroptosis and inflammation. P2X7 is highly expressed in human AAA specimen, as well as in experimental murine AAA lesions (both CaCl2- and Angiotensin II-induced AAA models), and it mainly confines in macrophages. ⋯ Consequently, the N-terminal fragment of GSDMD forms pores on the cell membrane, leading to macrophage pyroptosis and release of the pro-inflammatory factor IL-1β. The resulting vascular inflammation further leads to the upregulation of MMP and ROS, thereby promoting AAA development. In summary, these data identify P2X7-mediated macrophage pyroptosis signaling pathway as a novel contributory mechanism of AAA formation.