Translational research : the journal of laboratory and clinical medicine
-
Prostate cancer (PCa) is one of the leading causes of cancer-related deaths among men. Consequently, the identification of novel molecular targets for treatment is urgently needed to improve patients' outcomes. Our group recently reported that some elements of the cellular machinery controlling alternative-splicing might be useful as potential novel therapeutic tools against advanced PCa. ⋯ Notably, RBM22 overexpression decreased aggressiveness features in vitro, and in vivo. These actions were associated with the splicing dysregulation of numerous genes and to the downregulation of critical upstream regulators of cell-cycle (i.e., CDK1/CCND1/EPAS1). Altogether, our data demonstrate that RBM22 plays a critical pathophysiological role in PCa and invites to suggest that targeting negative regulators of RBM22 expression/activity could represent a novel therapeutic strategy to tackle this disease.
-
Despite optimal medical therapy, many patients with diabetic kidney disease (DKD) progress to end-stage renal disease. The identification of new biomarkers and drug targets for DKD is required for the development of more effective therapies. The apoptosis of renal tubular epithelial cells is a key feature of the pathogenicity associated with DKD. ⋯ Based on transcriptome sequencing, molecular mechanism exploration revealed that SIK2 overexpression reduces endoplasmic reticulum (ER) stress-mediated tubular epithelial apoptosis by inhibiting the histone acetyltransferase activity of p300 to activate HSF1/Hsp70. Furthermore, the specific restoration of SIK2 in tubules blunts tubular and interstitial impairments in diabetic and vancomycin-induced kidney disease mice. Together, these findings indicate that SIK2 protects against renal tubular injury and the progression of kidney disease, and make a compelling case for targeting SIK2 for therapy in DKD.
-
Nephrotoxicity is a major side effect of cisplatin, a widely used cancer therapy drug. However, the mechanism of cisplatin nephrotoxicity remains unclear and no effective kidney protective strategies are available. Here, we report the induction of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in both in vitro cell culture and in vivo mouse models of cisplatin nephrotoxicity. ⋯ Mechanistically, we demonstrated the interaction of PFKFB3 with cyclin-dependent kinase 4 (CDK4) during cisplatin treatment, resulting in CDK4 activation and consequent phosphorylation and inactivation of retinoblastoma tumor suppressor (Rb). Inhibition of CDK4 reduced cisplatin-induced apoptosis in RPTCs and kidney injury in mice. Collectively, this study unveils a novel pathological role of PFKFB3 in cisplatin nephrotoxicity through the activation of the CDK4/Rb pathway, suggesting a new kidney protective strategy for cancer patients by blocking PFKFB3.
-
Neurodegenerative diseases are characterized by a dysregulated neuro-glial microenvironment, culminating in functional deficits resulting from neuronal cell death. Inflammation is a hallmark of the neurodegenerative microenvironment and despite a critical role in tissue homeostasis, increasing evidence suggests that chronic inflammatory insult can contribute to progressive neuronal loss. Inflammation has been studied in the context of neurodegenerative disorders for decades but few anti-inflammatory treatments have advanced to clinical use. ⋯ We discuss inflammasome-driven pyroptotic processes highlighting the potential utility of evaluating extracellular inflammasome-related proteins in the context of biomarker discovery. We complete the report by pointing out gaps in our understanding of intracellular modifiers of inflammasome activity and mechanisms regulating the resolution of inflammasome activation. The literature review and perspectives provide a conceptual platform for continued analysis of inflammation in neurodegenerative diseases through the study of inflammasomes and pyroptosis, mechanisms of inflammation and cell death now recognized to function in multiple highly prevalent neurological disorders.
-
Human immunodeficiency virus type 1 (HIV-1) infection is a chronic disease without a known cure. The advent of effective antiretroviral therapy (ART) has enabled people with HIV (PWH) to have significantly prolonged life expectancies. As a result, morbidity and mortality associated with HIV-1 infection have declined considerably. ⋯ We also delineate the current literature on inflammasomes and the therapeutic targeting strategies aimed at the NLRP3 inflammasome to moderate HIV-1 infection-associated inflammation. Here we describe the NLRP3 inflammasome as a key pathway in developing novel therapeutic targets to block HIV-1 replication and HIV-1-associated inflammatory signaling. Controlling the inflammatory pathways is critical in alleviating the morbidities and mortality associated with chronic HIV-1 infection in PWH.