Translational research : the journal of laboratory and clinical medicine
-
The kidney is a vital organ that regulates the bodily fluid and electrolyte homeostasis via tailored urinary excretion. Kidney injuries that cause severe or progressive chronic kidney disease have driven the growing population of patients with end-stage kidney disease, leading to substantial patient morbidity and mortality. This irreversible kidney damage has also created a huge socioeconomical burden on the healthcare system, highlighting the need for novel translational research models for progressive kidney diseases. ⋯ By applying gene editing technology, organoid building blocks may be modified to minimize the process of immune rejection in kidney transplant recipients. In the foreseeable future, the universal kidney organoids derived from HLA-edited/deleted induced pluripotent stem cell (iPSC) lines may enable the supply of bioengineered organotypic kidney structures that are immune-compatible for the majority of the world population. Here, we summarize recent advances in kidney organoid research coupled with novel technologies such as organoids-on-chip and biofabrication of 3D kidney tissues providing convenient platforms for high-throughput drug screening, disease modelling, and therapeutic applications.
-
The ability to generate human retinas in vitro from pluripotent stem cells opened unprecedented opportunities for basic science and for the development of therapeutic approaches for retinal degenerative diseases. Retinal organoid models not only mimic the histoarchitecture and cellular composition of the native retina, but they can achieve a remarkable level of maturation that allows them to respond to light stimulation. However, studies evaluating the nature, magnitude, and properties of light-evoked responsivity from each cell type, in each retinal organoid layer, have been sparse. In this review we discuss the current understanding of retinal organoid function, the technologies used for functional assessment in human retinal organoids, and the challenges and opportunities that lie ahead.
-
Patient-derived tumor organoids (PDTOs) have emerged as exceptional pre-clinical models as they preserved, in most of the cases, the mutational landscape and tumor-clonal heterogeneity of the primary tumors. Despite being extensively used in disease modelling as well as in precision medicine for drug testing and discovery, they still have some limitations. The main limitation is that during their establishment they lose all components of the tumor microenvironment (TME) which are known modulators of tumor response to therapeutic treatment as well as disease progression. In this review we address the effects of different players of the TME such as immune cells, fibroblasts, endothelial cells and the extracellular matrix composition on tumor behavior and response to treatment as well as the different culture and co-culture strategies that could improve PDTOs value as pre-clinical models leading to the development of next generation PDTOs.
-
Despite progress in prevention and treatment, colorectal cancer (CRC) remains the third most common malignancy worldwide and the second most common cause of cancer death in 2020. To evaluate various characteristics of human CRC, a variety of mouse models have been established. Transplant mouse models have distinct advantages in studying the clinical behavior and therapeutic progress of CRC. ⋯ These milestone events have allowed for great progress in tumor biology and the treatment of CRC. This article reviews the evolution of these events and points out their strengths and weaknesses as innovative and useful preclinical tools to study CRC progression and metastasis and to exploit novel treatment schedules by establishing a testing platform. This review article depicts the optimal transplanted CRC mouse models and emphasizes the significance of surgical models in the study of CRC behavior and treatment response.
-
Development of optimal SARS-CoV-2 vaccines to induce potent, long-lasting immunity and provide cross-reactive protection against emerging variants remains a high priority. Here, we report that a modified porous silicon microparticle (mPSM) adjuvant to SARS-CoV-2 receptor-binding domain (RBD) vaccine activated dendritic cells and generated more potent and durable systemic humoral and type 1 helper T (Th) cell- mediated immune responses than alum-formulated RBD following parenteral vaccination, and protected mice from SARS-CoV-2 and Beta variant challenge. ⋯ Parenteral and intranasal prime and boost vaccinations with mPSM-RBD elicited stronger lung resident T and B cells and IgA responses compared to parenteral vaccination alone, which led to markedly diminished viral loads and inflammation in the lung following SARS-CoV-2 Delta variant challenge. Overall, our results suggest that mPSM is effective adjuvant for SARS-CoV-2 subunit vaccine in both systemic and mucosal vaccinations.