Translational research : the journal of laboratory and clinical medicine
-
Increasing experimental and clinical evidence has revealed a critical role for myeloid cells in the development and progression of cancer. The ability of monocytes and macrophages to regulate inflammation allows them to manipulate the tumor microenvironment to support the growth and development of malignant cells. Recent studies have shown that macrophages can exist in several functional states depending on the microenvironment they encounter in the tissue. ⋯ In the context of tumors, classically activated or M1 macrophages driven by interferon-gamma support antitumor immunity while alternatively activated or M2 macrophages generated in part from interleukin-4 exposure hinder antitumor immunity by suppressing cytotoxic responses against a tumor. In this review, we discuss the role that the functional phenotype of a macrophage population plays in tumor development. We will then focus specifically on how macrophages and myeloid cells regulate the tumor response to radiation therapy.
-
Hypertension is a multifactorial disease involving the nervous, renal, and cardiovascular systems. Macrophages are the most abundant and ubiquitous immune cells, placing them in a unique position to serve as key mediators between these components. The polarization of macrophages confers vast phenotypic and functional plasticity, allowing them to act as proinflammatory, homeostatic, and anti-inflammatory agents. ⋯ In hypertension, the neuroimmuno axis results in synchronization of macrophage mobilization from immune cell reservoirs and their chemotaxis, via increased expression of chemoattractants, to end organs critical in the development of hypertension. This complicated system is largely coordinated by the dichotomous actions of the autonomic neuronal and non-neuronal activation of cholinergic, adrenergic, and neurohormonal receptors on macrophages, leading to their ability to "switch" between phenotypes at sites of active inflammation. Data from experimental models and human studies are in concordance with each other and support a central role for macrophage polarization in the pathogenesis of hypertension.
-
Pulmonary fibrosis is a relatively rare but devastating disease characterized by the excessive deposition of extracellular matrix. The increased matrix results in reduced lung compliance and increased work of breathing, while the obliteration of alveolar-capillary structures can result in hypoxemia and pulmonary hypertension, which manifests clinically as worsening shortness of breath, respiratory failure, and death. Unbiased genome-wide association studies combined with animal models suggest that damage to the alveolar epithelium is the initiating factor in pulmonary fibrosis. ⋯ We and others have found that mitochondrial and NAD(P)H oxidase-generated reactive oxygen species (ROS) play a signaling role to enhance TGF-β signaling and promote fibrosis. The purpose of this article is to review how ROS signaling leads to the activation of TGF-β. We suggest that an improved understanding of these pathways might explain the failure of nonselective antioxidants to improve outcomes in patients with pulmonary fibrosis and might identify novel targets for therapy.
-
Cancer is a major cause of death worldwide, and its incidence and mortality continuously increase in China. Nowadays, cancer heavily influences our health and constitutes enormous burden on society and families. Although there are many tools for cancer treatment, but the overall therapeutic effect is poor. ⋯ Previous studies have reviewed PRRs as promising immunotherapy targets for colorectal cancer and pancreatic cancer. However, until now, a comprehensive review on the role of RLRs in the development and treatment of various cancers is still lacking. In this article, we reviewed the latest studies on the roles as well as the mechanisms of RIG-I and MDA5 in the development of various cancers and therapeutic potentials of targeting RIG-I and MDA5 for cancer treatment.
-
Malignant tumors of the central nervous system (CNS) cause substantial morbidity and mortality, yet efforts to optimize chemo- and radiotherapy have largely failed to improve dismal prognoses. Over the past decade, RNA sequencing (RNA-seq) has emerged as a powerful tool to comprehensively characterize the transcriptome of CNS tumor cells in one high-throughput step, leading to improved understanding of CNS tumor biology and suggesting new routes for targeted therapies. ⋯ These programs show great promise in improving patient outcomes for tumors where single agent trials have been ineffective. As RNA-seq is a relatively new technique, many further applications yielding new advances in CNS tumor research and management are expected in the coming years.