Translational research : the journal of laboratory and clinical medicine
-
Uncertainty exists regarding whether cyclophilin D (CypD), a mitochondrial matrix protein that plays a key role in ischemia-reperfusion injury, can be a pharmacological target for improving outcomes after cardiac arrest (CA), especially when therapeutic hypothermia is used. Using CypD knockout mice (CypD-/-), we investigated the effects of loss of CypD on short-term and medium-term outcomes after CA. CypD-/- mice or their wild-type (WT) littermates underwent either 5 minute CA followed by resuscitation with and/or without hypothermia at 33°C-34°C (targeted temperature reached within minutes after resuscitation), or a sham procedure. ⋯ In animals successfully resuscitated, loss of CypD had no benefits on day 7 survival while hypothermia was highly protective. Pharmacological inhibition of CypD with cyclosporine A combined with hypothermia provided similar day 7 survival than loss of CypD combined with hypothermia. CypD is a viable target to improve success of cardiopulmonary resuscitation but its inhibition is unlikely to improve long-term outcomes, unless therapeutic hypothermia is associated.
-
During the progression of diabetic kidney disease (DKD), renal lactate metabolism is rewired. The relationship between alterations in renal lactate metabolism and renal fibrosis in patients with diabetes has only been partially established due to a lack of biopsy tissues from patients with DKD and the intricate mechanism of lactate homeostasis. The role of lactate dehydrogenase A (LDHA)-mediated lactate generation in renal fibrosis and dysfunction in human and animal models of DKD was explored in this study. ⋯ We found that the pathogenesis of DKD is linked to hypoxia-mediated lactic acidosis, which leads to fibrosis and mitochondrial abnormalities. The pathogenic characteristics of DKD were significantly reduced when aerobic glycolysis or LDHA expression was inhibited. Further studies will aim to investigate whether local acidosis caused by renal LDHA might be exploited as a therapeutic target in patients with DKD.
-
Doxorubicin (Dox), as a widely used anthracycline antitumor drug, can cause severe cardiotoxicity. Cardiomyocyte death and inflammation are involved in the pathophysiology of Dox-induced cardiotoxicity (DIC). Gasdermin D (GSDMD) is known as a key executioner of pyroptosis, which is a pro-inflammatory programmed cell death. ⋯ Using molecular dynamics simulation and cell-free systems, we confirmed that Dox directly bound to GSDMD and facilitated GSDMD-N-mediated pyroptosis. Furthermore, GSDMD also mediated Dox-induced mitochondrial damage via Bnip3 and mitochondrial perforation in cardiomyocytes. These findings provide fresh insights into the mechanism of how Dox-engaged GSDMD orchestrates adverse cardiotoxicity and highlight the prospects of GSDMD as a potential target for DIC.
-
Cardiac fibrosis is a process characterized by extracellular matrix accumulation leading to myocardial dysfunction. Angiotensin II (Ang II) has been shown to play an important role in the pathogenesis of cardiac fibrosis. However, the underlying mechanisms are not well established. ⋯ Bioinformatics analysis and further validation experiments revealed that RAP1 is a direct downstream target of miR-23a-3p, and overexpression of RAP1 reversed the profibrotic effect of miR-23a-3p. Taken together, these findings elucidated the role of eWAT in Ang II-induced myocardial fibrosis and indicated that adipocyte-derived exosomes mediate pathologic communication between dysfunctional adipose tissue and the heart by transporting miR-23a-3p into CFs, transforming fibroblasts into myofibroblasts and promoting excessive collagen deposition by targeting RAP1. Prevention of abnormal adipocyte exosome production, inhibition of miR-23a-3p biogenesis, and treatment with a miR-23a-3p antagonist are novel strategies for treating cardiac fibrosis.
-
Review
Central and peripheral regulations mediated by short-chain fatty acids on energy homeostasis.
The human gut microbiota influences obesity, insulin resistance, and the subsequent development of type 2 diabetes (T2D). The gut microbiota digests and ferments nutrients resulting in the production of short-chain fatty acids (SCFAs), which generate various beneficial metabolic effects on energy and glucose homeostasis. However, their roles in the central nervous system (CNS)-mediated outputs on the metabolism have only been minimally studied. ⋯ These functions have been linked with AMPK signaling, GPCRs-dependent pathways, and inhibition of histone deacetylases (HDACs). However, the studies focusing on the central effects of SCFAs are still limited. The mechanisms by which central SCFAs regulate appetite, energy expenditure, and blood glucose during different physiological conditions warrant further investigation.