Translational research : the journal of laboratory and clinical medicine
-
Gap junctions, which mediate intercellular communication, are key players in digestive homeostasis. They are also frequently involved in gastrointestinal and liver pathology. ⋯ Cxs, Panxs, and their channels underlie a wide spectrum of gastrointestinal and liver diseases, including gastritis and peptic ulcer disease, inflammatory intestinal conditions, acute liver failure, cholestasis, hepatitis and steatosis, liver fibrosis and cirrhosis, infectious gastrointestinal pathologies, and gastrointestinal and liver cancer. This could open promising perspectives for the characterization of new targets and biomarkers for therapeutic and diagnostic clinical purposes in the area of gastroenterology and hepatology.
-
Esophageal adenocarcinoma (EAC) has increased 6-fold in its incidence in the last 2 decades. Evidence supports the hypothesis of stepwise progression from normal squamous epithelium → reflux esophagitis → metaplasia (Barrett's esophagus, BE) → dysplasia → adenocarcinoma. The precursor, BE, stands as the bridge connecting the widespread but naive reflux disease and the rare but fatal EAC. ⋯ This conceptual void is deterring further translational research and clouding clinical decision making. This article critically reviews theories on the pathogenesis of Barrett's esophagus and the various controversies surrounding its diagnosis. We further discuss unanswered questions and future directions, which are vital in formulating effective preventive and therapeutic guidelines for Barrett's esophagus.
-
Review Comparative Study
Porcine models of digestive disease: the future of large animal translational research.
There is increasing interest in nonrodent translational models for the study of human disease. The pig, in particular, serves as a useful animal model for the study of pathophysiological conditions relevant to the human intestine. This review assesses currently used porcine models of gastrointestinal physiology and disease and provides a rationale for the use of these models for future translational studies. ⋯ Pigs have also shown great promise for the study of intestinal barrier function, surgical tissue manipulation and intervention, as well as biomaterial implantation and tissue transplantation. Advantages of pig models highlighted by these studies include the physiological similarity to human intestine and mechanisms of human disease. Emerging future directions for porcine models of human disease include the fields of transgenics and stem cell biology, with exciting implications for regenerative medicine.
-
The development of new and specific treatment options for kidney disease in general and glomerular diseases in specific has lagged behind other fields like heart disease and cancer. As a result, nephrologists have had to test and adapt therapeutics developed for other indications to treat glomerular diseases. One of the major factors contributing to this inertia has been the poor understanding of disease mechanisms. ⋯ Because many of these patients develop nephrotic syndrome, understanding the relationship of proteinuria, the primary driver in this syndrome, with hypoalbuminemia, hypercholesterolemia, hypertriglyceridemia, edema, and lipiduria could provide valuable insight. The recent unraveling of the relationship between proteinuria and hypertriglyceridemia mediated by free fatty acids, albumin, and the secreted glycoprotein angiopoietin-like 4 (Angptl4) offers a unique opportunity to develop novel therapeutics for glomerular diseases. In this review, the therapeutic potential of mutant forms of Angptl4 in reducing proteinuria and, as a consequence, alleviating the other manifestations of nephrotic syndrome is discussed.
-
Renal fibrosis is the hallmark of virtually all progressive kidney diseases and strongly correlates with the deterioration of kidney function. The renin-angiotensin-aldosterone system blockade is central to the current treatment of patients with chronic kidney disease (CKD) for the renoprotective effects aimed to prevent or slow progression to end-stage renal disease (ESRD). However, the incidence of CKD is still increasing, and there is a critical need for new therapeutics. ⋯ These include strategies targeting chemokine pathways via CC chemokine receptors 1 and 2 to modulate the inflammatory response, inhibition of phosphodiesterase to restore nitric oxide-cyclic 3',5'-guanosine monophosphate function, inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 and 4 to suppress reactive oxygen species production, and inhibition of endothelin 1 or tumor necrosis factor α to ameliorate progressive renal fibrosis. Furthermore, a brief overview of some of the biomarkers of kidney fibrosis is currently being explored that may improve the ability to monitor antifibrotic therapies. It is hoped that evidence based on the preclinical and clinical data discussed in this review leads to novel antifibrotic therapies effective in patients with CKD to prevent or delay progression to ESRD.