Translational research : the journal of laboratory and clinical medicine
-
Oncolytic virotherapy is a new and safe therapeutic strategy for cancer treatment. In our previous study, a new type of oncolytic herpes simplex virus type 2 (oHSV2) was constructed. Following the completion of a preclinical study, oHSV2 has now entered into clinical trials for the treatment of melanoma and other solid tumors (NCT03866525). ⋯ We found for the first time that the expression of a pair of checkpoint molecules, NKG2A (on NK cells) and HLA-E (on tumor cells), is upregulated by UV-oHSV2 stimulation. Anti-NKG2A and anti-HLA-E treatment could further enhance the antitumor effects of UV-oHSV2-stimulated NK92 cells in vitro and in vivo. As our oHSV2 clinical trial is ongoing, we expect that the combination therapy of oncolytic virus oHSV2 and anti-NKG2A/anti-HLA-E antibodies may have synergistic antitumor effects in our future clinical trials.
-
Identification of patients with high-risk asymptomatic atherosclerotic plaques remains an elusive but essential step in preventing stroke. However, there is a lack of animal model that provides a reproducible method to predict where, when and what types of plaque formation, which fulfils the American Heart Association (AHA) histological classification of human plaques. We have developed a predictive mouse model that reflects different stages of human plaques in a single carotid artery by means of shear-stress modifying cuff. ⋯ By weeks 20 and 30, this model achieved 80% and near 100% accuracy respectively, in predicting precisely where, when and what stages/AHA types of plaques develop along the same carotid artery. This model can generate clinically-relevant plaques with varying phenotypes fulfilling AHA classification and risk levels, in specific locations of the single artery with near 100% accuracy of prediction. The model offers a promising tool for development of diagnostic tools to target high-risk plaques, increasing accuracy in predicting which individual patients may require surgical intervention to prevent stroke, paving the way for personalized management of carotid atherosclerotic disease.
-
Prediction of human pharmacokinetics (PK) from data obtained in animal studies is essential in drug development. Here, we present a thorough examination of how to achieve good pharmacokinetic data from the pig model for translational purposes by using single-species allometric scaling for selected therapeutic proteins: liraglutide, insulin aspart and insulin detemir. The predictions were based on non-compartmental analysis of intravenous and subcutaneous PK data obtained from two injection regions (neck, thigh) in two pig breeds, domestic pig and Göttingen Minipig, that were compared with PK parameters reported in humans. ⋯ In both breeds, thigh vs neck dosing was associated with a higher dose-normalized maximum plasma concentration and area under the curve as well as shorter MAT and plasma half-life (P <0.01). Finally, more superficial injections resulted in faster absorption, higher Cmax/dose and bioavailability of insulin aspart (P <0.05, 3.0 vs 5.0 mm injection depth). In conclusion, pig breed and injection region affected the PK of liraglutide, insulin aspart and insulin detemir and reliable predictions of human PK were demonstrated when applying single-species allometric scaling with the pig as a pre-clinical animal model.
-
Heritable thoracic aortic disease and familial thoracic aortic aneurysm/dissection are important causes of human morbidity/mortality, most without identifiable genetic cause. In a family with familial thoracic aortic aneurysm/dissection, we identified a missense p. (Ser178Arg) variant in PLOD1 segregating with disease, and evaluated PLOD1 enzymatic activity, collagen characteristics and in human aortic vascular smooth muscle cells, studied the effect on function. Comparison with homologous PLOD3 enzyme indicated that the pathogenic variant may affect the N-terminal glycosyltransferase domain, suggesting unprecedented PLOD1 activity. ⋯ In comparison, si-PLOD1 cells demonstrated hypercontractility and upregulation of contractile markers, providing evidence for phenotypic switching. Together, the findings suggest that the PLOD1 product is preserved, however newly identified glucosyltransferase activity of PLOD1 appears to be affected by folding stability of the variant, and is associated with compensatory vascular smooth muscle cells phenotypic switching to support collagen production, albeit with less robust fibril girth. Future studies should focus on the impact of PLOD1 folding/variant stability on the tertiary structure of collagen and ECM interactions.
-
Extracellular vesicles (EVs) have been recently postulated as key players in metabolic disorders emerging as an alternative way of paracrine/endocrine communication. However, the nature of EVs shed by adipose tissue (AT) and their role in obesity is still very limited. Here, we isolated human morbid obese visceral (VAT) and subcutaneous (SAT) whole AT shed EVs from donors submitted to bariatric surgery to characterize their protein cargo by qualitative and quantitative/SWATH mass spectrometry analysis. ⋯ Thus, a significant elevation of -TGFBI-EVs was detected on those obese patients with a history of T2D compared to nondiabetic, and an augmentation of mimecan-EVs in obese plasma compared to those in healthy lean individuals. Thus, we conclude that obese AT release functional EVs carrying AT and obesity candidate biomarkers which vary regarding the AT of origin. Our findings suggest that circulating EV-TGFBI may facilitate monitoring T2D status in obese patients, and EV-mimecan may be useful to track adiposity, and more precisely, visceral obesity.